
Overview

Smart List is a flexible component that allows you to build custom lists by using point and click configuration. It can handle Salesforce objects, files
and custom data sources such as web services.
The component works with any Salesforce object and can be deployed on Lightning home, app, record and community pages as well as screen
flows.

This allows you to get rid of most limitations of list views and related lists:

Capability Smart List OOB List
Highly Customizable Record Lists Yes Limited capability
Highly Customizable Tiles Yes No
Highly Customizable Search Component Yes Limited capability
Highly Customizable Files lists Yes No

Populate fields on file upload Yes No
Inline Edit

Multiple Record Types Yes No
All Data Types Yes No

Custom Actions
Complex logic on selected records Yes Limited capability
Complex logic on loaded records Yes No
Custom actions on all objects Yes No

Records Filtering
Predefined filters Yes Limited capability
Visibility filters based on record ownership and role hierarchy Yes Limited capability

Records Search
Customizable search form Yes No
SOSL Search on related lists Yes No
Easy search on Record Type, Owner, and Related record Yes No

Data Source
Display data from external services or complex SOQL queries Yes No
Indirect Relationships such as display Contacts of the Account of a Case Yes Limited capability
Display records not shared with user Yes No

Available in Screen Flows Yes Limited capability
Trigger Programmatic list updates from a Lightning Web Component Yes No

Like list views and related lists, Smart Lists allow sorting, filtering and navigation to record detail. They also offer additional filtering capabilities
with predefined and visibility filters based on record ownership and role hierarchy (My, My Team, My Subordinates and All)

Like Related Lists, Smart Lists can be displayed as Tiles with additional capabilities:

• Customizable Layout
• Customizable fields in Title
• Badge with Dynamic styling
• Sort
• Record selection

Sortable Columns

Hyperlinks with
navigation to
record detail

Visibility FiltersPredefined Filters

Sortable Fields

Badge with
Dynamic StylingCustomizable Title

Unlike list views and related lists, the Search Form can be customized for displaying the fields you want to expose in the order relevant to your
users.
It also allows you to easily search Owner, related records, and Record Type fields with lookups and picklists

SOSL Search on
Record or File Content

Search on Filterable
Fields

Lookup for searching
Owner and related

records

Picklist for searching
on record type

There are 3 types of Smart Lists:

• SOQL list for displaying and editing records from any Salesforce object
• Files list for managing files
• Apex Data Source for displaying data retrieved by an Apex class. This Apex class can be used for retrieving data with a Web Service or a

complex SOQL query not handled by the standard SOQL list

Smart Lists can be used for building child lists with 3 types of relationships:

• Direct Relationship: records of the list are retrieved based on the Id of the parent record

Actions for SOQL & Apex List Actions for Files List

Custom Record
Actions

Custom List
Actions for

Selected Records

Standard Actions
for creating,
updating and

deleting records

Custom List
Actions for

Selected Files

Custom Files
Actions

Standard Files
Actions

Standard Files
Actions

Standard Actions
for creating,
updating and

deleting records

• Indirect Relationship on Id: records of the list are retrieved based on id values stored present in both the parent record and the list records

• Indirect Relationship on Text Value: records of the list are retrieved based on text values present in both the parent record and the list
records

Contents
How to use this document .. 8

Upgrade from Previous Versions ... 9

Upgrade from Summer 23 ... 9
Upgrade from Spring 23 .. 9
Upgrade from Summer 22 ... 9

Quick Start ... 10

Example 1: List of Cases of an Account with inline edit, multiline cells, cell styling predefined filters, visibility filters, custom actions on selected
records and custom New case action .. 11
Example 2: List of Files of an Account .. 25
Example 3: Tiles of Leads ... 28
Example 4: Leads search component with field value displayed as images and clickable label field navigating to a URL .. 33

Guided Setup ... 36

Step 1: Create a Smart List Definition .. 37
Step 2: Create Smart List Fields ... 43
Step 3 - Optional: Create Smart List Filters .. 48
Step 4 - Optional: Create Smart List Actions .. 48
Step 5 – Add the list to a target Page .. 50

Lightning App Builder Page .. 50
Digital Experience Page ... 51
Screenflow ... 53

Lookups .. 55
Search Customization .. 55
Wrap text mode ... 59
Sorting Customization .. 59
Files List Customization ... 60
Considerations for object, and field access ... 61
Considerations for standard record actions .. 61
External Object support ... 61
Features by List Type and Targets ... 63

Programmatic Updates of the Smart List with Lightning Messaging Service .. 65

Apex Data Source for Record Detail Page .. 65
Apex Data Source for Record Detail Page .. 65
Sample LMS Publisher ... 66

Apex Data Sources ... 70

Apex Data Source for Record Detail Page .. 70
Apex Data Source for Home Page or Custom Tab ... 76
Pre-requisites for adding standard record actions to your list .. 81
Interface and Classes Reference .. 82

smartLists.SmartListApexSourceInterface2 Interface ... 82
smartLists.SmartListApexSourceGetPage Class ... 82
smartLists.SmartListController.FilterEntry Class ... 83

Localization .. 84

How to use this document

If you are upgrading from Summer 22 or Spring 23, make sure to implement the steps described in the Upgrade from Previous Versions section

Visit this Trailhead Group if you want to collaborate and get updates on Smart Lists

Go to the Quick Start section if you want to learn Smart Lists configuration by building 4 samples lists

Go to the Guided Setup section if you need a step-by-step setup guide for all the use cases supported by Smart Lists

Go to the Localization section if you need to localize your Smart Lists for supporting multiple languages

Examples of Apex Data Sources can be found in the Apex Data Sources section

https://trailhead.salesforce.com/trailblazer-community/groups/0F94S000000kQcK?tab=discussion&sort=LAST_MODIFIED_DATE_DESC

Upgrade from Previous Versions

Because of a Salesforce limitation, page layouts are not always updated during a package upgrade. If you don’t see a field mentioned in this guide,
edit the corresponding page layout and add it

Upgrade from Summer 23
This new field must be populated on your List Definition records:

• Filters Panel Layout must be set to ‘Right - On Demand’

This new field must be populated on your List Action records:

• List Action Availability must be set to ‘When Records are Selected’

Upgrade from Spring 23
These new fields must be populated on your List Definition records:

• Display Mode must be set to ‘Table’
• Show SOSL Search must be set to ‘In Filters Panel’

Upgrade from Summer 22
These new fields must be populated on your Field Definition records:

• Display in Filters Panel
• Display Position in Filters Panel
• Sortable in List

Apex Data Source classes must be updated with the new format see Apex Data Source for Record Detail Page and Apex Data Source for Home Page
or Custom Tab

Quick Start

Learn Smart List configuration by configuring these 4 sample lists:

• List of Cases of an Account with Inline Edit
• List of Files of an Account
• Tiles of Leads
• Search Screen of Leads

Example 1: List of Cases of an Account with inline edit, multiline cells, cell styling predefined filters, visibility filters, custom actions on
selected records and custom New case action

Step 1: Create a text formula field on the Case object for the dynamic styling
- Field Label: Status Style
- Field Name: Status_Style
- API Name: Status_Style__c
- Formula: IF (ISPICKVAL(Status, "Escalated"), "tc:firebrick;icn:utility:warning;icc:firebrick;icp:left", IF (ISPICKVAL(Status, "New"),

"tc:#0033cc;icn:utility:alert;icc:#0033cc;icp:left", "tc:rgb(24,24,24)"))

Step 2: Create the list
• Setup / Custom Metadata Type / Click Manage Records in front of Smart List Definition
• Click New
• Use the following screenshot for creating the list definition:

Notes:
• List Settings

o Data Source Type: SOQL with Sharing for displaying the records visible by the user; SOQL without Sharing for ignoring the records
visibility rules for the user

o Display Mode: Table for displaying the list as a table
o List Label is populated with ‘Sample Case List’. If you leave this field empty, the list label will be the plural label of the list SObject,

‘Cases’ for this example
o List Icon: if left empty, the icon of the base object is used. Can be used for adding a SLDS icon such as standard:lead or utility:cart
o Filters Panels Layout: Specifies the position of the panels (left or right of the list) as well as if it is displayed all the time or when the

Filters icon is clicked
o Filters Panel Height: If a value (pixels) is specified, the panel will become scrollable if its heights exceeds this value
o Show SOSL Search: In Filters Panel for displaying the search box in the Filters Panel, In Component for displaying it above the list, Not

Displayed for removing the SOSL search
o Export to CSV: the Export to CSV button is displayed in the list

• Child Lists - Relationship Settings
o Parent Id Field: Field of the base object containing the id of the parent record for list of child records. Not needed if the list has no

parent
• Table Settings

o Wrap Column Header: Column headers are wrapped up to 3 lines if they don’t fit in the column width; otherwise they are displayed
on 1 line with ellipsis at the end

o Table Height in Pixels: If specified, the height of the table is based on this value, otherwise, the height of the table is calculated based
on Number of Records per Page; specifying a height is the preferred option if you have multiline cells

o Wrap Text Max Lines: Cell content is wrapped up to the specified number of lines when Wrap is selected on the column. See Wrap
text mode

• SOQL with/without Sharing & Apex Settings
o SObject: Base object of the list
o Enable All Record Actions: Allow to create, edit, and delete records in the list. Actions are displayed if the user has the corresponding

access on the object. For example, if a user can create and edit records in the object but cannot delete them, the Delete action
won’t be available.

o Visibility Filters fields: Check the filters you want to display in the list. Specify in Default Visibility Filter the filter that will be used
when the list is displayed for the first time

Step 2: Create the fields

• Setup / Custom Metadata Type / Click Manage Records in front of Smart List Field
• Use the following table for creating the fields:

Field List Settings Filters Settings

Field Name Display
in List

Display
Position in
List

Sortable
in List

Display
in Filters

Display
Position in
Filters

Other

CaseNumber TRUE 0 Yes Yes 0 Display Type Settings
Display Type: Hyperlink to Detail
Table Settings
Column Width: 90

Subject TRUE 1 Yes Yes 3 Table Settings
Inline Edit: TRUE

Description TRUE 2 No No Table Settings
Column Width: 250
Inline Edit: TRUE
Wrap: TRUE

Contact.Name TRUE 3 Yes Yes 3 Field
Lookup Subtitle Field: Title
Display Type Settings
Display Type: Hyperlink to Detail
Filters Settings
Lookup in Filters Panel: TRUE
Table Settings
Inline Edit: TRUE

LastModifiedDate TRUE 4 Yes Yes 4 List Settings
Default Sort Field: TRUE
Table Settings
Field Alignment: Right

Status TRUE 5 Yes Yes 5 Fields
Dynamic Style Field: Status_Style__c
Table Settings
Column Width: 160
Inline Edit: TRUE
Field Alignment: Right

Owner TRUE 6 Yes Yes 6 Filters Settings
Lookup in Filters Panel: TRUE
Lookup Subtitle Field: Title

IsClosed FALSE No No

Notes:

• CaseNumber:
o Rendered as a hyperlink to Case Detail: Display Type is Hyperlink to Detail
o Initial column width is 90px; if no value is specified in Column Width, the width is determined by the component

• Subject: Editable in list because Inline Edit is checked
• Description:

o Displayed in the list but not in the Filters Panel (Display in Filters = No)
o Content will be wrapped on 3 lines if needed (Wrap = True; it is not sortable in the list (Sortable in List = No); the width of the

column is 250 pixels (the width of the other columns is determined by the system because Column Width is left blank)
o Editable in list because Inline Edit is checked

• Contact.Name:
o Field Label is Contact because we don’t want to use ‘Full Name’ which is the label defined at the object level
o Display Type is Hyperlink to Detail because we want the field to be rendered as a hyperlink to the Contact detail page
o Because Lookup in Filters Panel is checked and Lookup Subtitle Field which is set to Title, the field is searchable in the Filters Panel as

a lookup where users can search Contacts by Name and Subtitle
o Uncheck Lookup in Filters if you want to display a text box in the Filters Panel for searching the contacts by their name
o Editable in list because Inline Edit is checked

• LastModifiedDate:
o The content of the cell is aligned to the right because Field Alignment is set to right; Cells are aligned to the Left is no alignment is

specified
• Status:

o The content of the cell is styled based on the value returned by Status_Style__c:
§ tc: text color
§ icn: icon name see https://www.lightningdesignsystem.com/icons/
§ icc: icon color
§ icp: position of the icon relative to the text. The possible values are right, left and hidevalue if you want to display the icon

without the value of the cell
o Displayed in the list and in the Filters but not at the same position (Display Position in List = 5; Display Position in Filters = 1)
o Editable in list because Inline Edit is checked

https://www.lightningdesignsystem.com/icons/

• Owner:
o Because the field name is Owner, the list determines that the name of the owner must be displayed in the list and the field is

searchable in Filters as a lookup where users can search the owner by name and by the field added in Lookup Subtitle Field which is
the Title of Users in this example

o If you want to search by Owner Name instead, set the field name to Owner.Name and uncheck Lookup in Filters Panel
• IsClosed: This field is not displayed in the list and the Filters Panel. It is added to the list because it is needed by a custom action of this

example

Step 4: Test your page

• Make sure, the Apex Class ‘smartLists.SmartListController’ is accessible by your user
• Display an account record
• Setup / Edit Page

• In the Component widget on the left, select the Smart List component in Custom – Managed (1)
• Drag the Smart List component on the page (2)
• In List Definition Name (3), select the name of the list you created

• Activate the page if needed and save it
• Test the list. Change the parameters of the list definition to see how they affect the list

1

2

3

Step 5: Create predefined list filters

• Setup / Custom Metadata Type / Click Manage Records in front of Smart List Filter
• Use the following table for creating the filters:

Filter Label Default
Filter

SOQL Filter

Cases I Created This Year FALSE CreatedDate = THIS_YEAR AND CreatedById = USERID
Closed Cases FALSE IsClosed = true
Open Cases TRUE IsClosed = false

• Notes:

o Default Filter is used for specifying which filter is displayed when the list is displayed for the first time
o SOQL Filter must be a valid SOQL WHERE clause
o The Smart Lists variable USERID returns the Id of the running user

• Refresh the Account page to display the new filters

Step 6: Create custom row and list actions for closing the cases selected in the list

• Create a new auto-launched flow
• Create the following flow variables:

Variable Type Description
records Collection of records – Available for

input (Object = Case)
Contains a list of selected records passed to the flow. Each record includes the Id field as
well all the other fields defined in the list

parentId Text – Available for input Id of the parent account
successMsg
(optional)

Text – Available for output Message to display when the action is successful
See Create Smart List Actions for more details

errorMsg
(optional)

Text – Available for output Message to display when the action failed
See Create Smart List Actions for more details

cases Collection of Records (Object = Case) Collection for storing the cases updated by the flow
case Record (Object = Case) Case to update in the database
canSaveCases Boolean Flag for tracking if the cases can be closed. Default value: {!$GlobalConstant.True}

- Add the following elements to the flows:

Current Item from Loop Loop_Cases > Case Id

• Save the flow as ‘SLCases – Close Cases’ and activate it
• Create a List Action: Setup / Custom Metadata Type / Click Manage Records in front of Smart List Action
• Use the following table for creating the list and row action:

Action Label Type Display
Position

Refresh
After
Execution

Category List Action Availability Flow Name

Close Case Row Action 0 Row Autolaunched Flow SLCases_Close_Cases
Close Selected Cases List Action 0 List Autolaunched Flow When Records are Selected SLCases_Close_Cases

Note: when List Action Availability is set to ‘When records are Selected’, the list action button can only be clicked when records are selected
in the list

• Refresh the Account page to display the Actions
• Click the arrow on the right of a row to display the Row Actions and select the ‘Close Case’ menu item
• Select several records in the list by clicking the checkbox of the left column and click the ‘Close Selected Cases’ button
• Create a custom permission called ‘Can Close Case’ with API Name ‘Can_Close_Case’
• Assign the custom permission to your profile or permission set

• Edit the List Actions and put ‘Can_Close_Case’ in the Custom Permission field
• Refresh the Account page and check that your actions are visible
• Remove the custom permission from your profile or permission set
• Refresh the Account page and check your actions are no longer visible

Step 7: Create a custom New action for creating new Cases
Smart Lists comes with a standard New record action that is enabled on the list definition. This action displays the record form of the page layout
assigned to the running user. You can use a custom list action if you need to build your own new record form

• Create a new screenflow
• Create the following flow variables:

Variable Type Description
records Collection of records – Available for

input (Object = Case)
This parameter is optional for a New record action but may be needed for some use cases
where you need to get the records loaded in the list

parentId Text – Available for input Id of the parent account
successMsg Text – Available for output Message to display when the action is successful
errorMsg Text – Available for output Message to display when the action failed
• Add the components needed for capturing the data and saving the case to the Screenflow
• Save and activate the screenflow
• Use the following table for creating the list action:

Action Label Type Display
Position

Refresh
After
Execution

Category List Action Availability Flow Name

New List Action 1 List Screefllow Always API name of your screenflow
Notes:

- When List Action Availability is set to ‘Always’, the list action button can be clicked all the time
- Flow actions are displayed in modal dialogs. The UI of the dialogs can be customized

o Screenflow: Modal Height: specify the height of the modal in pixels. If left blank, the height of the modal is determined by the height
of the flow

o Screenflow: Show Label in Modal Header: If checked, the label of the action is displayed in the header of the modal. Otherwise, no
header is displayed. When you check this field, you may want to uncheck Show Header in the screens of your flow so that your label
is the only title for the action.

Example 2: List of Files of an Account

Step 1: Create the list
• Setup / Custom Metadata Type / Click Manage Records in front of Smart List Definition
• Click New
• Use the following screenshot for creating the list definition:

Notes:

• Allowed Extensions is used for specifying the file extensions allowed for upload:
o If empty, no extension check is performed on upload
o If not empty, the extension check is performed for all users without the custom permission Don’t check file extension

Step 2: Create the fields
• Setup / Custom Metadata Type / Click Manage Records in front of Smart List Field
• Use the following table for creating the fields:

Field List Settings Filters Settings
Field Name Display

in List
Display
Position
in List

Sortable
in List

Display
in
Filters

Display
Position
in Filters

Other

Title TRUE 0 Yes Yes 0 Display Type Settings
Display Type: TRUE
Files Settings
Editable in File Edit Form: Editable and required

Description TRUE 1 Yes Yes 1 Files Settings
Editable in File Edit Form: Editable and required

SharingPrivacy TRUE 2 Yes Yes 2 Files Settings
Editable in File Edit Form: Editable and required

LastModifiedDate TRUE 3 Yes Yes 3 List Settings
Default Sort Field: TRUE

Notes:

• Display Type is not needed for Files list except for adding a link to the file preview popup. This popup is not available in Digital Experience
sites

• The Editable in File Edit Form attribute is used for specifying which fields are included in the file edit form which is displayed when a file is
uploaded, or its detail is updated

Step 3: Assign the following permissions to your profile or permission set
Label API Name Description
Don't check file extension SmartFilesList_Don_t_check_file_extension Bypass the file extension check for Upload File and Upload New Version

actions
Download Files SmartFilesList_Download_Files Control access to File Download action
Edit File Details SmartFilesList_Edit_File_Details Control access to Edit File Details action
Preview Files SmartFilesList_Preview_Files Control access to Preview File action
Upload Files SmartFilesList_Upload_Files Control access to Upload File action
Upload New Version SmartFilesList_Upload_New_Version Control access to Upload New Version action
View File Details SmartFilesList_View_File_Details Control access to View File Details action

Step 4: Add a Smart Files List component to the Account Detail Page and select the name of the list you created in List Definition Name
Step 5: Test the component
Step 6: Add/Remove some of the above custom permissions and refresh the page to see how the list is affected
See Files List Customization for more details

Example 3: Tiles of Leads

Step 1: Create the list
• Setup / Custom Metadata Type / Click Manage Records in front of Smart List Definition
• Click New
• Use the following screenshot for creating the list definition:

Notes:

• Data Source Type set to ‘SOQL without Sharing’: running users can see records that are not shared with them. This setting is only meant to
be used for very specific use cases. SOQL with Sharing should be the preferred option

• Tile Layout set to 2x2: display 2 tiles per row and 2 fields per tile
• Filters Panels Max Height set to 249.50: the height of the Filters Panel is limited to 249.5px; users must scroll to see some of the filters
• Show SOSL Search is set to ‘Not Displayed’: the SOSL search box is never displayed

Step 2: Create a formula field on the Lead object for styling the badge

Field Label: Rating Badge Style
Field Name: Rating_Badge_Style__c
Data Type: Formula Text
Formula:

IF(ISPICKVAL(Rating, "Hot"), "bc:#2e844a;tc:white", IF(ISPICKVAL(Rating, "Warm"), "bc:#feca39;tc:black", "bc:#2172d5;tc:white"))
 bc: background color of the badge; must be be a valid CSS color such as white or RGB(128,128,128) or hex color
 tc: color of the text if the badge; must be a valid CSS color such as white or RGB(128,128,128) or hex color
 if an invalid style is returned by the formula field, the badge will be displayed with a blue background and a white text

Step 3: Create the fields

• Setup / Custom Metadata Type / Click Manage Records in front of Smart List Field
• Use the following table for creating the fields:

Field List Settings Filters Settings
Field Name Display

in List
Display
Position
in List

Sortable
in List

Display
in
Filters

Display
Position
in Filters

Other

Name TRUE 0 Yes Yes 0 Display Type Settings
Display Type: Hyperlink to Detail
List Settings
Default Sort Field: TRUE
Tile Settings
Display as Tile Header: TRUE

Status TRUE 1 Yes Yes 1 Tile Settings
Display as Tile Header: TRUE

Rating TRUE 2 Yes Yes 2 Tile Settings
Display as Tile Header: TRUE
Display as Badge: TRUE
Badge Style Field: Rating_Badge_Style__c

Owner TRUE 3 Yes Yes 3 Filters Settings
Lookup in Filters Panel: TRUE
Lookup Subtitle Field: Title

Phone TRUE 4 Yes Yes 4
Email TRUE 5 Yes Yes 5
RecordType TRUE 6 Yes Yes 6

Notes:
• Name: This field is displayed in the Tile Header because Display in Tile Header is checked
• Status: This field is displayed after Name in the Tile Header because Display in Tile Header is checked and its Display Position in List is

greater
• Rating: This field is displayed in the Tile Header as a dynamically style badge based on the style returned by the formula field

Rating_Badge_Style__c
• RecordType:

o Because the field name is RecordType, the list determines that the name of the record type must be displayed in the list and the
field is searchable in Filters as a picklist containing all the active record type values

Step 4: Add a Smart List component to the Home Page and select the name of the list you created in List Definition Name
Step 5: Change the value of Tile Layout on the list definition and refresh the page to see how the layout of the Tiles is affected

Example 4: Leads search component with field value displayed as images and clickable label field navigating to a URL

Step 1: Create the list
• Setup / Custom Metadata Type / Click Manage Records in front of Smart List Definition
• Click New
• Use the following screenshot for creating the list definition:

Notes:

• Because Disable Autoload on Initialization is checked, no records are loaded when the list is displayed for the first time
• Because Disable Paging is checked, all records matching the search criteria are loaded at once
• Because Filters Panel Layout is set to ‘Left – All the Time’ the Filters Panel is displayed on the left of the list and cannot be closed

Step 2: Create 2 formula fields on the Lead object

Dynamic styling of a cell
Field Label: Rating Style
Field Name: Rating_Style__c
Data Type: Formula Text
Formula:

IF (ISPICKVAL(Rating , 'Hot'), "icn:utility:priority;icc:seagreen;icp:hidevalue", (IF (ISPICKVAL(Rating , 'Warm'),
"icn:utility:priority;icc:rgb(255, 215, 0);icp:hidevalue", (IF (ISPICKVAL(Rating , 'Cold'), "icn:utility:priority;icc:blue;icp:hidevalue",
"icn:utility:question_mark;icp:hidevalue")))))

§ icn: icon name
§ icc: icon color
§ icp: icon position; set to hidevalue for displaying the icon without the value; can also be left or right

Dynamic HTML of a cell
Field Label: HTML Rating
Field Name: HTML_Rating__c
Data Type: Formula Text
Formula:

CASE(Rating,
"Hot", IMAGE("/resource/GraphicsPackNew/silk/16/silk/flag_green.png", "Hot"),
"Warm", IMAGE("/resource/GraphicsPackNew/silk/16/silk/flag_yellow.png", "Warm"),
"Cold", IMAGE("/resource/GraphicsPackNew/silk/16/silk/flag_blue.png","Cold"), "")
Note: the images of the formula are not part of the package. You can either install the Graphics Pack from the AppExchange or
add your own images to a static resource and update the formula accordingly. The height of the images must be 19px or lower

Step 3: Create the fields
• Setup / Custom Metadata Type / Click Manage Records in front of Smart List Field
• Use the following table for creating the fields:

Field List Settings Filters Settings
Field Name Display

in List
Display
Position
in List

Sortable
in List

Display
in
Filters

Display
Position
in Filters

Other

Name TRUE 0 Yes Yes 0 Display Type Settings
Display Type: Hyperlink to Detail
List Settings
Default Sort Field: TRUE

Rating TRUE 1 Yes Yes 1 Field
Dynamic Style Field: Rating_Style__c
Table Settings
Field Alignment: Center

HTML_Rating__c TRUE 2 Yes No
Owner TRUE 3 Yes Yes 3 Filters Settings

Lookup in Filters Panel: TRUE
Lookup Subtitle Field: Title

Email TRUE 4 Yes Yes 4
Company TRUE 5 Yes Yes 5 Display Type Settings

Display Type: URL with Label
URL with Label Value: Website

Notes:
• Rating:

o The field is styled based on the formula field form Dynamic Style Field
o The value of the field is centered in the cells with Field Alignment = Center

• Company: because Display Type is set to ‘URL with Label’, users are navigated to the company web site if they click on the company name
o Make sure that Website contains a value otherwise, the field will not be clickable

Step 4: Add a Smart List component to the Home Page and select the name of the list you created in List Definition Name

Guided Setup

Step 1: Create a Smart List Definition

Smart List Definition Detail

• Enter unique values in Label & Smart List Definition Name

List Settings
This section contains the settings for all list types

• Data Source Type:
o SOQL with Sharing: display records of an object and enforce the records visibility rules of the running user
o SOQL without Sharing: display records of an object and bypass the records visibility rules of the running user
o Files: display files related to a parent record
o Apex Data Source: custom Apex Data Provider

• Display Mode: Table or Tile
• List Label

o Leave empty if you want to use the default value (Files lists or lists with SObject)
§ Default value for list with a SObject: plural label of the SObject. Example: Cases if SObject is set to Case
§ Default value for Files list: Files

o You can override the default label by entering a value or $Label.CustomLabelName if you want to use a translatable label. Example:
$Label.CasesLists for using a custom label named CaseLists

o You need to provide a value for Apex lists not associated to a SObject

• List Icon

o Leave empty if you want to use the default value (Files lists or lists with SObject)
§ Default value for list with a SObject associated to a tab: icon of the object
§ Default value for list with a SObject not associated to a tab (Campaign Member, Opportunity Product…): Salesforce default

icon. See below for setting your own icon
§ Default value for Files list: standard Files icon

o You can override the default icon by entering the name of a Salesforce icon: https://www.lightningdesignsystem.com/icons/
§ The icon name must respect the following syntax: name of the category in lower case + : + name of the icon. Example,

utility:bookmark for the bookmark icon of the Utility category

§ You need to provide a value for Apex lists not associated to a SObject
§ No icon is displayed is you provide an invalid value

• Records management
o Maximum Number of Records: maximum number records that can be displayed in a list
o Number of Records per Page: number of records retrieved when the user scrolls in the list; for tables, used for determining the

height of the list
o Disable Autoload on Initialization: if checked, no records are loaded when the list is displayed for the first time
o Disable Paging: if checked, when the list is displayed for the first time or a search is made in the Filters Panels, the list will try to load

all the records matching the criteria. If the number of returned records is higher than the value defined in Maximum Number of
Records, the number of loaded records will be limited this value. Disabling paging can impact the performance of the list and must
be tested with the target datasets

• Row Selection
o Selectable Rows: checked if users can select rows in the list; required if you want to use list level action
o Max Row Selected: value greater than 0; radio buttons are displayed if 1 is entered, otherwise checkboxes are displayed

• Filters Panel Layout, Filters Panel Max Height & Show SOSL Search: see Search Customization
• Default Sort Direction: see Sorting Customization
• Export to CSV: the Export to CSV button is displayed and can be used for exporting the records to a CSV file

https://www.lightningdesignsystem.com/icons/

Child Lists - Relationship Settings

This section is used for configuring child lists (list of records related to a parent record). Examples: Cases of an Account or Files of an Account

2 types of relationships are available:

• Direct relationship: the id of the parent record is used for retrieving the child records displayed in the list:
o Parent Id Field: API name of the field containing the Id of the parent record on the list object. For example, AccountId for a list of

child Cases of a parent Account because Case.AccountId contains the value of the parent record. Only supported for SOQL & Apex
lists

• Indirect relationship on Id: an Id field of the parent record is used for retrieving the records of the list
o For SOQL and Apex list, the relationship can be built on any datatype (text, number…); for Files lists, the relationship can only use Id

fields
o Parent Id Field: API name of the field containing the Id of the parent record on the list object. Only supported for SOQL & Apex lists
o Indirect Relationship: Parent Key Field: API name of the field of the parent object containing the id of the list records

• Notes:
o Parent Id Field must be a field of the base object of the list
o Formula fields can be used for retrieving related ids for Parent Id Field and Parent Key Field. For Id based relationship, the formula

must use CASESAFEID to return the 18 characters ids expected by Smart Lists

Examples:

• List of Cases for an Account (list on an Account record page):
o Parent Id Field: AccountId (name of the Case field containing the Id of the parent Account)

• List of Files for an Account (deployed on an Account record page):
o Parent Id Field: not used

• List of Contacts related to the Account of a parent Case (list on a Case record page)
o Indirect Relationship: Parent Key Field: AccountId because Case.AccountId contains the Id of the Account related to the Case
o Parent Id Field: AccountId because Contact.AccountId contains the Id of the Account related to the Contact

• List of Contacts related to the department of a parent Case (deployed on a Case record page)
o A custom text field Department__c has been created on Case & Contact for storing the code of the department
o Indirect Relationship: Parent Key Field: Department__c because Case. Department__c contains the code of the department of the

Case
o Parent Id Field: Department__c because Contact. Department__c contains the code of the department of the Contact

• List of Files related to the Account of a parent Case (list on a Case record page)
o Indirect Relationship: Parent Key Field: AccountId because Case.AccountId contains the Id of the Account related to the Case
o Parent Id Field: not used

Table Settings

This section is used when Display Mode is set to ‘Table’ and contains the parameters of the table:
• Show Table Header: display the names of the columns in a table header
• Wrap Column Headers: the headers are wrapped up to 3 lines if they don’t fit in the width of the column
• Show Row Number Column: if checked, a column is added on the left of the table and contains the number of the row
• Table Height in Pixels: height of the table in pixels; if not specified the height of the table is calculated based on Number of Records per

Page
• Row Number Start: if Show Row Number Column is checked, specifies the number of the first row
• Wrap Text Max Lines: see Wrap textmode

Tiles Settings

This section is used when Display Mode is set to ‘Tiles’ and contains the parameters of the tiles:
• Tile Layout: controls the layout of the tile. 3x1 means that each row of the component will contains 3 tiles and 1 field will be displayed in a

row of a tile
• Example: 2 tiles per row of the component

• Example: 2 fields per row of a tile

SOQL with/without Sharing & Apex Settings
• SObjectName: name of the SObject of the list. For Apex lists, only needed if you want to add record actions to your list
• Record Actions:

o Control the standard record actions: New, Edit, and Delete Record. These actions are not displayed if the running user does not have
the corresponding access on the object

o Enable all Record Actions: check if you want to allow users to create, update and delete records in the list
o Enable New, Edit, Delete Record Action: check if you want to specify which record actions are available in the list
o New Record Action Label: use your own label for the New record action

• Visibility Filters:
o Apart from My Queues, all Visibility Filters are filtering records based on record ownership and role hierarchy:

o My Queues: returns all records owned by the queues the running user is member of
o Check the Visibility Filters; make sure the selected filters are supported by your object. My Team is not supported on some standard

objects. My, My Team and My Subordinates are not available for objects without an Owner field
o Default Visibility Filter: filter that will be used the first time the list is displayed; must be one of the selected filters
o If you need to build a list with one filter only (My Cases, My Team Leads), select the filter you need and the Visibility Filters

combobox won’t be displayed
o My Subordinates doesn’t return records for users without a role

User: VP Service
Role: VP

User: Director Service
Role: Director

User: CSR1
Role: CSR

User: CSR2
Role: CSR

User: CEO
Role: CEO

Record Visibility by Filter when VP Service is the running userCase Records

My TeamMy SubordinatesMyAllCase OwnerCase Number

XCEO1

XXXVP Service2

XXXDirector Service3

XXCSR14

XXCSR25

Files Settings

• Allowed Extensions:
o If you want to restrict the extensions of the files that can be uploaded, enter a comma separated list of file extension. For example:

txt,jpg
o Leave blank if you don’t want to have a restriction of file extensions
o See Files List Customization for more details

Apex Settings
• Data Provider Class: name of the class of the data provider. See Apex Data Sources
• Row Key:

o Field of the data source containing the unique identifier of a record returned by the data source
o See Apex Data Sources

Step 2: Create Smart List Fields

Information

• Enter unique values in Label & Smart List Field Name; best practice: prefix the values with the name of the parent list

Field

• Smart List Definition: parent list
• Field Label:

o Leave empty if you want to use the label of the field (SOQL and Files lists only)
o Custom value: enter a value or enter $Label.CustomLabelName if you want to use a translatable label

• Field Name:
o SOQL and Files lists:

§ API name of a field: can be a related field. Examples: Account.Name or Branch__r.Code__c
• Fields are only displayed if the running user has read access on the field
• Related fields are only displayed if the running user has read access on the related object and the related field
• While SmartLists does not limit the depth of the relationships (Contact.Account.Parent.Name), adding related fields

to lots of different objects has an impact on the performance of the component
§ RecordType predefined field: RecordType.Name is displayed in the list and a picklist of active record types is displayed in the

Filters Panel
§ Owner predefined field: Owner.Name is displayed in the list and a lookup for selecting the owner is displayed in the Filters

Panel
o Apex Data Source: name of the field in the data source
o Dynamic Style Field: API name of the text formula field returning the styling for a field

§ The returned value much be a list of styling tags separated by semicolons such as
tc:green;icn:utility:priority;icc:seagreen;icp:right

§ Valid Style Tags:
• tc: text color; valid values are

o CSS color: aliceblue, seagreen,
o rgb value: rgb(240, 248, 255), rgb(46, 139, 87)
o hex value: #F0F8FF, #2E8B57

• icn: icon name; must be a Salesforce icon name; see List Icon in the Table section for more details
• icc: icon color

• icp: icon position; valid values are:
o left: icon displayed to the left of the field value
o right: icon displayed to the right of the field value
o hidevalue: icon displayed without the field value

• Lookup Subtitle Field: see Lookups

Display Type Settings

• Display Type:
o Hyperlink to Detail

§ Select this value if you want to display a hyperlink to a record detail in the column
§ For Apex Data Sources, you need to enter the name of the field containing the Id of the related record in Hyperlink to Detail

Id Field
o File Preview (Files List only): add a hyperlink for opening the standard File Preview page. Because this page is not available in Digital

Experiences sites, it is replaced by a hyperlink to the file detail page in a Digital Experience context
o Currency Converted: in Multi-Currency orgs, display the value of a currency field converted to the currency of the running user
o Currency Formatted: in Multi-Currency orgs, display the value of a currency field for the currency of the record and optionally

converted to the currency of the running user if the currency of the record and the running are different
o URL with Label

§ Select this value if you want to display a clickable label that navigates to a URL specified in the data source
§ The field containing the value of the URL must be specified in ‘URL with Label: Value’

• If you don’t need to create a field definition for this field
• If the value of URL Value is empty on a record, the label is not displayed

§ The target of the URL is ‘_blank’ by default. You can optionally specify another target in ‘URL with Label: Target’. The ‘_self’
target can only be used on Salesforce URLs

o Other values: ignored for SOQL and Files list types; required for Apex Data Source

• Hyperlink Id Field (used with Hyperlink to Detail):
o Field of the list record containing the Id of the target record. Example: For a hyperlink to Account on Case, Hyperlink Id Field =

AccountId
o SOQL and Files lists

§ If left blank, SmartLists will automatically determine the value for you:
• Base field of the list (Case Number for a list of Cases): Id of the record (Case.Id)
• Related Field (Account.Name for a list of Cases): Id of the related record (Case.AccountId)

§ If Hyperlink to Detail is set on a formula field, you will need to populate this value because SmartLists cannot determine a
value. Example for a formula displaying the name and city of the account of a case: AccountId

o Apex lists: must be populated with the field of the data source containing the id of the target record. See Apex Data Source for
Record Detail Page

o You don’t need to create a field definition for the field specified in Hyperlink Id Field
• URL with Label: Value and URL with Label: Target: see Display Type
• Lookup Subtitle field: for lookup fields, value of the subtitle field
• Lookup SOQL Filter: for lookup fields, SOQL filter used for filtering the records returned by the lookup

List Settings

• Display in List: if checked, the field is displayed in the list.
• Display Position in List: if the value is 1, the field will be displayed to the right of the field with value 0
• Sortable in List &Default Sort Field: see Sorting Customization
• Note: If you want to add HTML formatted formula fields, make sure that the height of the content is 19 pixels or lower. Otherwise, it will be

truncated. Column wrapping is not available for this data type

Filters Settings

• Display in Filters Panel & Display Position in Filters Panel: see Search Customization
• Lookup in Filters Panel: see Search Customization

Table Settings

• Column Width: specify the initial with of the column in pixels; or leave blank if you want the system to automatically determine the width of
the column

• Field Alignment: alignment of the value in the cell
• Inline Edit: the field is editable in the list with the following restrictions:

o The running user has edit right on the field
o The datatype is editable
o The field is on the base object
o The field is directly related to a parent of the base object

§ On Case, Contact.Name is editable because it is related to a parent of the base object
§ On Case, Contact.Account.Name is not editable because it is related to a grandparent of the base object

o The dynamic style of edited field is only updated after the record is saved
o Editing several rows at a time is partly supported for picklist and lookup types:

Because of a Salesforce bug, checking Update x selected items before selecting a value will make the edit form disappear

• Wrap Text: see Wrap Mode Customization

Tiles Settings
• Display in Tile Header: if checked, the field is displayed in the tile header, otherwise, it is displayed in the tile. Several fields can be added to

the header; they will be added based on the order specified in Display Position in List
Example: Tile Header with Lead Name and Lead Status

• Display as Badge: if checked, the field is displayed in the tile header as a badge with a dynamic styling
• Badge Style Field: Formula field returning the style of the badge for the current record

o the formula field must return a string formatted as follows: bc:valid color; tc:valid color
See https://developer.mozilla.org/en-US/docs/Web/CSS/color_value for valid color codes

o bc is used for specifying the background color of the badge
o tc is used for specifying the color of the text of the badge
o Example for Lead Rating dynamic styling: IF(ISPICKVAL(Rating, "Hot"),"bc:#2e844a;tc:white", IF(ISPICKVAL(Rating, "Warm"),

"bc:#feca39;tc:black","bc:#2172d5;tc:white"))

Files Settings
• Editable in File Edit Form:

o –None--: the field is not displayed in the File Edit Form
o Editable and Required: the field is displayed as required in the File Edit Form even if it is not required at the database level
o Editable: the field is in the File Edit Form. It will be marked as required in the form if it is required at the database level
o Note: Checkbox fields cannot be required in the File Edit Form

Note: you can create fields that are not displayed in the list and in the Filters if you need them in the flow actions

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value

Step 3 - Optional: Create Smart List Filters

If you create only one filter, it will be used as default and the Filters combobox won’t be displayed

• Enter unique values in Label & Smart List Filter Name; best practice: prefix the values with the name of the parent list
• Smart List Definition: parent list
• Filter Label: enter a value or enter $Label.CustomLabelName if you want to use a translatable label
• Default Filter: check if you want this filter to be used when the list is displayed for the first time
• SOQL Filter: SOQL expression of the filter; for SOQL and Files lists only.

o Example of filters for a list of cases:
§ Status = ‘Open’
§ RecordType.DeveloperName = ‘MyRt’
§ CreatedById = USERID. The variable USERID return the Id of the running user
§ SOQL date functions and date literals are available

Step 4 - Optional: Create Smart List Actions

• Enter unique values in Label & Smart List Action Name; best practice: prefix the values with the name of the parent list
• Smart List Definition: parent list
• Action Label: enter a value or enter $Label.CustomLabelName if you want to use a translatable label
• Type:

o List Action: action executed on the rows selected in the list; the button of this action is displayed at the top of the list when rows are
selected

o Row Action: action executed on a singled row; the menu item of this action is displayed in the row actions menu
• Display Position: display position in the list of buttons or in the row actions menu. If you enter 1; the action will be displayed after the action

with 0
• Refresh After Execution: determine if the list of the row must be refreshed after the execution of the action
• Category: type of flow Autolaunched or Screenflow
• Custom Permission: if populated, the action is available if the running user has this custom permission; API name of the custom permission

https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_date_functions.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_dateformats.htm

• Flow Name: API name of the flow
o See Autolaunched Flow Example
o Your flow must have the following variables:

API Name Required Resource
Type

Data
Type

Object Allow
multiple
values

Availability
outside
the flow

Description

records Yes Variable Record Base object
of the list

Checked Available
for input

List of records passed to the flow. Each record includes
the Id field and all the list fields (see List Action
Availability for records passed)
If your flow need a field that you don’t want to display in
the list or in the Filters Panel, create a Field Definition
with Display in List = false and Display in Filters = No

parentId Yes Variable Text N/A Unchecked Available
for input

For child lists, id of the parent record; null otherwise

successMsg No Variable Text N/A Unchecked Available
for output

Message to display if the action is successful
No message will be displayed if no value is returned

errorMsg No Variable Text N/A Unchecked Available
for output

Message to display if the action fails
No message will be displayed if no value is returned
Note: successMsg will be displayed instead of errorMsg if
it has a value

• List Action Availability:
Value Available when Records passed to the flow

When Records are Selected One or more records are selected in the list
Example: close selected cases

Selected records

When Records are Loaded Records are loaded in the list
Example: add the contacts returned by a search to a campaign

Loaded records

Always Available all the time
Example: custom New record action

Loaded records or empty
array if no records loaded

• Screenflow Modal Height: height in pixels of the modal dialog used for displaying the screen flow; not needed for auto-launched flows; if
left blank the height of the modal is based on the height of the flow screen

• Screenflow: Show Label in Modal Header: if checked, the label of the action is displayed in the header of the modal dialog. Otherwise, the
header is not displayed

Step 5 – Add the list to a target Page
• Prerequisite: make sure, the Apex Class ‘smartLists.SmartListController’ is accessible by your user

Lightning App Builder Page

• Navigate to the page where you want to add the list
• Edit the App Builder page

• In the Components widget on the left, select the Smart List / Smart Files List component in Custom – Managed
• Drag the component on the page
• Enter the parameters of the component

o List Definition Name: name of the List Definition
• Activate the page if needed and save it

Digital Experience Page
• Open your site in Experience Builder
• Select the page where you want to add your list

• In the Components widget on the left, select the Smart List / Smart Files List component in Custom Components

• Drag the component on the page
• Enter the parameters of the component

o For a list of child records, Record ID must be populated with {!recordId}
o List Definition Name: name of the List Definition

• Preview your changes
• Click Publish

Screenflow
• Consideration for Screenflows

o Hyperlinks to Detail are not available in Screenflows because you need to end the flow before navigating to another screen; as a
workaround, you can configure your list for allowing the selection of 1 record at a time (Max Row Selected > 1 on List Definition) and
build a custom Custom Flow Action that will close the flow and navigate to the record after a click on Next

o Screenflows actions are not available in Screenflows because of a Salesforce limitation

• Create a Screenflow
• If row selection is allowed in your list, create a variable for receiving the record(s) selected in the list if you need to use the selected records

in your flow
o Data Type: Record
o Object: SObject of the list
o Allow multiple values: checked if the list is configured for selecting more than 1 records (Max Row Selected > 1 on List Definition):

https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/components_config_for_flow_actions.htm?_ga=2.29156412.1866470253.1665440628-571298379.1665438709

• Add the Smart List / Smart Files List component to a screen

• Enter the properties of the component

o Input Type: object type of the list – Not available for Smart Files Lists
o INTERNAL: must be set to {!$GlobalConstant.True}
o List Definition Name: API name of the list definition
o Minimum Row Selected: enter a value if you want to make sure users select at least a specific number of rows before moving to the

next screen
o Record ID: flow variable containing the parent id of the list; leave blank if the list is not related to a parent record
o Advanced / Manually assign variables:

§ If unchecked (required for reactive flows), use the variables of the component:
• Selected Record: selected record for single selection lists. Data type: Record of SObject of the list
• Selected Records: selected records for multi selection lists. Data type: collection of Record of SObject of the list
• Selected Records Count: number of records selected in the list. Data type: Number

§ If checked, assign the output values to your own variables

Lookups

Lookups are used for retrieving a related record with inline edit and optionally in the Filters Panels. The related record is searched on the Name
field (Account Name, Case Number) and on the Lookup Subtitle Field if provided

The list of matching results contains the name and optionally the subtitle

Lookup Subtitle Field: field of the related record that is displayed in the search results for an easier identification of the records

o subtitle is optional
o must have the data type Text, Email, Phone or Picklist
o not displayed if the running user does not have read access to the field

Search Customization

• List Definition
o Filters Panel position and behavior:

§ Filters Panel Layout:
• Left – XYZ: the panel is displayed on the left of the list
• Right – XYZ: the panel is displayed on the right of the list
• On-Demand: the panel is displayed when the Filters button is clicked
• All the Time: the panel is displayed all the time and cannot be closed

§ If you want to hide the Filters Panel, mark all your Fields as not Visible in Filters Panel. See below
§ Filters Panel Max Height:

• If a value is not specified, all the filters are displayed in the list and users may have to scroll to view all of them and
click the panel buttons

Name Field of the record (Name, CaseNumber…)

Lookup Subtitle

Search
Results

• Otherwise, the height of the panel is set to the specified value. If the height in pixels of all the filters is higher than the
provided value, the filters are displayed in a scrollable window

o SOSL Search:
§ The SOSL search box visibility and location are controlled by the value set in Show SOSL Search:

• In Filters Panel: the SOSL search box is displayed in the Filters Panel

• In Component: the SOSL search box is displayed above the list

• Not Displayed

§ SOSL search is only searching the text fields (Email, Phone, String, Text Area, Url); related fields or fields with other data types
are not searchable

§ The SOSL search box is not displayed if the list has no searchable fields
§ Some objects, such as Opportunity Line Item or Campaign Member, are not searchable with SOSL. The SOSL search box is not

displayed for these objects

Search box

Search box

• Field Definition
o Display in Filters Panel: select No if you don’t want to display the field in the Filters Panel; fields which are not searchable because of

their datatype or Shield Probabilistic Encryption are not displayed in the Filters Panel even if Display in Filters is selected
o Display Position in Filters Panel: display position in the Filters Panel. If you enter 1; the field will be displayed after the field with 0
o Lookups in Filters Panel: if checked, the search is

o Lookups are used for filtering on record Owner and related records in the Filters Panel
o In the search results, the name field of the record (Name, CaseNumber…) as well as an optional subtitle field are displayed
o Lookup in Filters Panel: if checked, the field is displayed as a lookup; otherwise it is displayed as a text field
o Lookup Subtitle Field: field of the related record that is displayed in the search results for an easier identification of the records

§ subtitle is optional
§ must have the data type Text, Email, Phone or Picklist
§ not displayed if the running user does not have read access to the field

• Search on text fields with Shield Deterministic Encryption:
o Encrypted text fields are searched based on the exact value provided in the panel (= operator)
o Non-encrypted text fields are searched with the LIKE operator

• Search on text fields of External Objects:
o The LIKE operator is not available on External Objects. Text fields are searched based on the exact value provided in the panel (=

operator)
• If you don’t want to allow search in your list, make sure that Visible in Filters Panel is set to No on all the fields

Name Field of the record (Name, CaseNumber…)

Lookup Subtitle

Search
Results

Wrap text mode

By default, values are displayed in Clip text mode. Values which don’t fit the width of the cell or have several lines are truncated on 1 line
terminated by ellipsis.
Wrap text mode can be used to display the values on several lines.

Users can switch between modes by using the corresponding column actions in the header of the column

The Wrap text mode of a column is controlled by the following parameters:

• List Definition
o Wrap Text Max Lines: number of lines before wrapping the content of a cell when the column is in Wrap text mode; if you enter 3

and the cell contains 4 lines, 3 lines will be displayed in the cell and 3 dots will be added at the end of the third line to indicate there
are more lines in the cell

• Field Definition
o Wrap Text: check if you want Wrap text to be the default mode for the column

Sorting Customization

• List Definition
o Default Sort Direction: sort direction used for the Default Sort Field the first time the list is displayed

• Field Definition
o Sortable in List: select No if you want to disable the sort on this field to avoid performance issues
o Default Sort Field: check if the records must be sorted on this field the first time the list is displayed

Files List Customization

Standard Actions

Access to standard actions is controlled by custom permissions that can be added to a profile or a permission set:
Label API Name Description
Don't check file extension SmartFilesList_Don_t_check_file_extension Bypass the file extension check for Upload File and Upload New Version

actions
Download Files SmartFilesList_Download_Files Control access to File Download action
Edit File Details SmartFilesList_Edit_File_Details Control access to Edit File Details action
Preview Files SmartFilesList_Preview_Files Control access to Preview File action
Upload Files SmartFilesList_Upload_Files Control access to Upload File action
Upload New Version SmartFilesList_Upload_New_Version Control access to Upload New Version action
View File Details SmartFilesList_View_File_Details Control access to View File Details action

Note: some standard actions are not available for all targets. See Features by List Type and Targets for more details

Restrict Extensions of Uploaded Files

It is possible to restrict the extensions of the files uploaded with the File Upload and File Upload new Version actions.
The valid extensions are defined on the list definition in Allowed Extensions as a comma separated list of extensions such as jpg,txt.

The control of the extensions is only happening if a value has been entered in Allowed Extensions and the running user does not have the custom
permission Don’t check file extension

File Edit Form

It is possible to create a File Edit Form which is displayed when new files are uploaded or when Edit File Details is selected.

The fields are added to the form by entering a value in ‘Editable in File Edit Form’ of the Field Definition:

• Editable and Required: the field is displayed in the form as required if the running user has access to the field
• Editable: the field is displayed in the form if the running user has access to the field. The field is marked as required if it is required at the

object level

The fields are displayed in the form based on the order specified in Display Position in List

Considerations for object, and field access
• An error message is displayed if the running user doesn’t have read access to the object of the list
• List fields are not displayed in the list if the running user doesn’t have read access to the field
• An error message is displayed if none of the list fields are visible by the running user

Considerations for standard record actions

• New, Edit and Delete actions are only available if the running user has the corresponding access rights on the object
• The New/Edit form is using the page layout assigned to the running user
• New and Edit are not supported for Person Account, Event and Task

External Object support

Restrictions and Limitations

• Record actions are not supported
• Lookups in the Filters panel are not supported
• Visibility filters are ignored
• Related fields are not sortable
• Text fields are searched with the = operator instead of LIKE

Configuration of relationships

• Child relationships with a standard or custom object are configured as follows:
o An Indirect Lookup field must be added to the external object:

§ Related to: parent standard or custom object
§ Target Field: field of the parent object containing the Id of the parent record available in the external object
§ External Column Name: field of the external object containing the id of the parent record
§ Example for a relationship to Account on Order (Order__x):

• Account field ERP_Account_Number__c contains the ERP account number
• External object field Account_Number__c contains the ERP account number and is mapped to External Column Name

accountNumber
• Indirect Lookup field Account__c on Order__x:

o Related To: Account
o Target Field: ERP_Account_Number__c
o External Column Name: accountNumber

o An indirect relationship must be configured as follows on the List Definition:
§ Parent Id Field: Account__c (field on child external object)
§ Indirect Relationship: Parent Key Field: ERP_Account_Number__c (field on Account)

• Child relationships between related external objects are configured as follows:
o An External Lookup field must be added to the child external object:

§ Related to: parent external object
§ External Column Name: field of the child external object containing the id of the parent record
§ Example for a relationship to Order (Order__x) from Order Line (Order_Line__x):

• Order__x field Order_Number__c contains the order number
• Order_Line__x field Order_Number__c contains the order number and is mapped to orderNumber
• External Lookup field Order__c on Order_Line__x:

o Related To: Order__x
o External Column Name: orderNumber

o An indirect relationship must be configured as follows on the List Definition:
§ Parent Id Field: Order_Number__c (field on child external object)
§ Indirect Relationship: Parent Key Field: ExternalId

Features by List Type and Targets

Availability by Target

 Targets
Feature Lightning App Builder pages Digital Experience site pages Screen Flow
List Type

SOQL List Home, App, and Record pages All pages Everywhere
Files List Record page Record detail page Everywhere
Apex Data Source Home, App, and Record pages All pages Everywhere

Standard Record Actions
New Available Available Available
Edit Available Available Available
Delete Available Available Available

Standard File Actions
File Upload Available Available Available
File Download Available Available Available
File Preview Available Automatically replaced by View

File Details
Not available

View File Details Available Available Not available
Edit File Details Available Available Available
Upload New Version Available Available Available

Other Standard Actions
Export to CSV Available Available Available
Custom Actions

Screenflow Available Available Not available
Auto-launched Flow Available Available Available

Features by List Type
 List Types
Feature SOQL List Files List Apex Data Source
Inline Edit Available Available Not Available
SOSL Search All text fields of the records Content of the files All text fields of the records
Filters Panel fields All filterable fields of the base object

with Display in Filters set to Yes
All filterable fields of Content Version
with Display in Filters set to Yes

All fields with Display in Filters set to
Yes

Custom Filters Available Available Available
Export to CSV Available Available Available
Visibility Filters

All Available Available Available
My if supported by object Available Available
My Subordinates if supported by object Available Available
My Queues If supported by object Available Available
My Team if supported by object Not Available Available

Note for Apex Data Source: the support for the features must be implemented in the data provider

Programmatic Updates of the Smart List with Lightning Messaging Service

Apex Data Source for Record Detail Page
Message must be published to the ‘SmartList__c’ Message Channel

Apex Data Source for Record Detail Page
Type of Update Message Example Parameters
Refresh list {"list":"*", "action": {"type":"REFRESH"}} list: ‘*’ for refreshing all lists or Smart List Definition Name of the list

to refresh (example: Sample_Leads_List)
action.type: REFRESH

Set custom filter {"list":" Sample_Leads_List", "action":
{"type":"FILTER","filter":"Leads_Open_Leads"}}

action.type: FILTER
action.filter: Smart List Filter Name of the filter (example:
Leads_Open_Leads)

Set SOQL Scope {"list":" Sample_Leads_List", "action":
{"type":"SCOPE","scope":"mine"}}

action.type: SCOPE
action.scope:

- everything: ‘All’scope
- mine: ‘My’ scope
- team: ‘My Team’ scope
- subordinates: ‘My Subordinates’ scope
- queues: ‘My Queues’ scope

Sample LMS Publisher

lMSPublisher.html
 <lightning-card title="LMS Publisher">
 <div class="slds-var-p-around_medium lgc-bg">
 <lightning-input type="text"
 label="'*' for targetting all the Smart Lists of the page or Developer Name of one of the Smart Lists of the page"
 value={target} onchange={handleTargetChange}></lightning-input>
 </div>
 <lightning-tabset>
 <lightning-tab label="Refresh List">
 <div class="slds-var-p-around_medium">
 <lightning-button label="Publish" onclick={handleRefresh}></lightning-button>
 </div>
 </lightning-tab>
 <lightning-tab label="Select Filter">
 <lightning-layout horizontal-align="spread">
 <lightning-layout-item size="10" padding="around-small">
 <lightning-input type="text"
 label="Filter Developer Name" onchange={handleFilterChange} variant="label-inline"></lightning-input>
 </lightning-layout-item>
 <lightning-layout-item size="2" padding="around-small">
 <lightning-button label="Publish" onclick={handleSelectFilter}></lightning-button>
 </lightning-layout-item>
 </lightning-layout>
 </lightning-tab>
 <lightning-tab label="Select Scope">
 <lightning-layout horizontal-align="spread" >
 <lightning-layout-item size="5" padding="around-small">
 <lightning-combobox label="Scope" options={scopeOptions} value={scope} onchange={handleScopeChange} variant="label-inline"></lightning-combobox>
 </lightning-layout-item>
 <lightning-layout-item size="7" padding="around-small">
 <lightning-button label="Publish" onclick={handleSelectScope}></lightning-button>
 </lightning-layout-item>
 </lightning-layout>
 </lightning-tab>
 </lightning-tabset>

 <p slot="footer">
 Published Message: <lightning-formatted-text value={message}></lightning-formatted-text>
 </p>
 </lightning-card>
</template>

lMSPublisher.js
import { LightningElement, wire } from 'lwc';

// Import message service features required for publishing and the message channel
import { publish, MessageContext } from 'lightning/messageService';
import SMARTLIST_CHANNEL from '@salesforce/messageChannel/SmartList__c';

export default class LmsClient extends LightningElement {
 @wire(MessageContext)
 messageContext;

 // COMPONENT VARIABLES
 // Target
 _target = '*';
 get target() {
 return this._target;
 }
 // List Filter
 _filter;
 get filter() {
 return this._filter;
 }
 // Scope Options
 scopeOptions =
 [
 { label: 'All', value: 'everything' },
 { label: 'My', value: 'mine' },
 { label: 'My Team', value: 'team' },
 { label: 'My Subordinates', value: 'subordinates' },
 { label: 'My Queues', value: 'queues' },
];

 _scope = 'everything';
 get scope() {
 return this._scope;
 }

 // Published message
 _message;
 get message() {
 return JSON.stringify(this._message);
 }

 // TARGET LIST
 // Target List Value Change
 handleTargetChange(event) {
 this._target = event.detail.value;
 }

 // REFRESH LIST
 // Publish Refresh Event
 handleRefresh() {
 this._message = { list: this.target, action: {type: 'REFRESH' }};
 publish(this.messageContext, SMARTLIST_CHANNEL, this._message);
 }

 // FILTER
 handleFilterChange(event) {
 this._filter = event.detail.value;
 }
 handleSelectFilter() {
 this._message = { list: this.target, action: {type: 'FILTER', filter: this.filter }};
 publish(this.messageContext, SMARTLIST_CHANNEL, this._message);
 }

 // SCOPE
 handleScopeChange(event) {
 console.log('scopeChange ' + JSON.stringify(event.detail));
 this._scope = event.detail.value;

 }
 handleSelectScope() {
 this._message = { list: this.target, action: {type: 'SCOPE', scope: this.scope }};
 publish(this.messageContext, SMARTLIST_CHANNEL, this._message);
 }
}

Apex Data Sources

Apex Data Source for Record Detail Page

Step 1: Create an Apex class with the following code. Make sure your user has access to the class:
global with sharing class ApexDataSourceWithParent implements smartLists.SmartListApexSourceInterface2 {
 // Base query used by getPage and getRecords
 Static String baseQuery = 'SELECT AccountId, StageName, Sum(Amount) OpptiesSum, Count(Id) OpptiesCount, Owner.Name Owner FROM Opportunity';
 // Group By clause used by getPage and getRecords
 Static String groupByClause = ' GROUP BY StageName, AccountId, Owner.Name';

 // Get a list page
 public List<Map<String, Object>> getPage(smartLists.SmartListApexSourceGetPage parms) {
 String query = baseQuery;
 // Add visibility filter to the query
 query += ' USING SCOPE ' + parms.getScope();
 // Add relationship with parent record to where clause
 String whereClause = parms.getParentIdField() + ' = \'' + parms.getParentId() + '\'';
 // If predefined filter defined for the list, add the filter to the where clause
 whereClause += String.isEmpty(parms.getFilter()) ? '' : ' AND (' + parms.getFilter() + ')';
 String havingClause = '';
 // If values entered in Filters Panel, add them to the where and having clauses
 if (parms.getFilterEntries() != null && parms.getFilterEntries().size() > 0) {
 List<smartLists.SmartListController.FilterEntry> whereEntries = new List<smartLists.SmartListController.FilterEntry>();
 List<smartLists.SmartListController.FilterEntry> havingEntries = new List<smartLists.SmartListController.FilterEntry>();
 for (smartLists.SmartListController.FilterEntry fe : parms.getFilterEntries()) {
 if (fe.fieldName == 'Sum(Amount)')
 havingEntries.add(fe);
 else if (fe.fieldName == 'Count(Id)')
 havingEntries.add(fe);
 else
 whereEntries.add(fe);
 }
 String filtersWidget = smartLists.SmartListController.buildFilter(whereEntries);
 whereClause += String.isEmpty(filtersWidget) ? '' : (String.isEmpty(whereClause) ? filtersWidget : ' AND (' + filtersWidget + ')');
 havingClause = smartLists.SmartListController.buildFilter(havingEntries);
 }
 // Add where clause to query
 query += String.isEmpty(whereClause) ? '' : ' WHERE ' + whereClause;
 // Add group by to query
 query += groupByClause;
 // Add having clause to query
 query += String.isEmpty(havingClause) ? '' : ' HAVING ' + havingClause;
 // If sort field passed, add sort parameters to query
 query += String.isEmpty(parms.getSortField()) ? '' : ' ORDER BY ' + parms.getSortField() + ' ' + parms.getSortDirection();
 // Add paging parameters to query

 query += ' LIMIT ' + parms.getPageSize() + ' OFFSET ' + parms.getOffset();
 // Retrieve the records
 return getRecords(query);
 }

 // Get a list record
 public List<Map<String, Object>> getRecord(String id) {
 String query = baseQuery;
 // Add where clause to query
 query += ' WHERE AccountId = \'' + id + '\'';
 // Add group by to query
 query += groupByClause;
 // Retrieve the records
 return getRecords(query);
 }

 // Query the database and format the records for Smart Lists
 private List<Map<String, Object>> getRecords(String query) {
 System.debug('Query ' + query);
 // Query the database
 AggregateResult[] oppties = Database.query(query);
 // Parse the returned records and format them for Smart List
 System.debug('Oppties ' + oppties);
 List<Map<String, Object>> results = new List<Map<String, Object>>();
 for (AggregateResult oppty : oppties) {
 Map<String, Object> record = new Map<String, Object>();
 record.put('RowKey', (String)oppty.get('AccountId') + (String)oppty.get('StageName') + (String)oppty.get('Owner')); // Note: Required field for identifying a unique record
 record.put('Id', oppty.get('AccountId')); // Note: A field called Id is required in the list for using flow actions
 record.put('StageName', oppty.get('StageName'));
 record.put('Sum(Amount)', oppty.get('OpptiesSum'));
 record.put('Count(Id)', oppty.get('OpptiesCount'));
 record.put('Owner.Name', oppty.get('Owner'));
 results.add(record);
 }
 return results;
 }
}

Step 2: Create a list definition

Notes:

- Parent Id Field is used for passing the parent id to the Apex Class
- Data Provider Class is the name of the class created at Step 1
- RowKey is the name of the field populated in the Apex Data Source. It must contain a unique row identifier otherwise, a Javascript error

may happen when the list is refreshed or updated

Step 3: Create the fields

Field List Settings Filters Settings
Field Label Field Name Display

Type
Hyperlink
to Detail
Id Field

Display
in List

Display
Position
in List

Sortable
in List

Default
Sort
Field

Display
in Filters
Panel

Display
Position
in Filters
Panel

Stage StageName String TRUE 0 Yes FALSE Yes 0
Number of Opportunities Count(Id) Integer TRUE 1 Yes FALSE Yes 1
Total Amount Sum(Amount) Currency TRUE 2 Yes FALSE Yes 2
Owner Owner.Name String TRUE 3 Yes FALSE Yes 3

Note:

- Field Label and Display Type are required for an Apex Data Source

Step 4: Create the predefined filters
Filter Label Default

Filter
SOQL Filter

Won Opportunities FALSE IsClosed = true AND isWon = true
Opportunities in Progress TRUE IsClosed = false
Lost Opportunities FALSE IsClosed = true AND isWon = false

Step 5: Add the list to your Account Detail Page

Test Class

@isTest
public with sharing class ApexDataSourceWithParentTest {
 @isTest
 static void testGetPage() {
 // Create the test data
 Account acc = new Account(name = 'test');
 insert acc;
 Opportunity oppty1 = new Opportunity(name = 'Oppty1', AccountId = acc.Id, CloseDate = System.today(), StageName = 'Prospecting', Amount=100);
 Opportunity oppty2 = new Opportunity(name = 'Oppty2', AccountId = acc.Id, CloseDate = System.today(), StageName = 'Value Proposition', Amount=100);
 Opportunity oppty3 = new Opportunity(name = 'Oppty3', AccountId = acc.Id, CloseDate = System.today(), StageName = 'Closed Won', Amount=100);
 List<Opportunity> oppties = new List<Opportunity>{oppty1, oppty2, oppty3};
 insert oppties;
 // Create values from Filters Panel
 smartLists.SmartListController.FilterEntry fe1 = new smartLists.SmartListController.FilterEntry();
 fe1.fieldName = 'StageName';
 fe1.operator='LIKE';
 fe1.values = new String[]{'Prospecting' };
 fe1.type='STRING';
 smartLists.SmartListController.FilterEntry fe2 = new smartLists.SmartListController.FilterEntry();
 fe2.fieldName = 'Sum(Amount)';
 fe2.operator='>=';
 fe2.values = new String[]{'100'};
 fe2.type='CURRENCY';
 smartLists.SmartListController.FilterEntry fe3 = new smartLists.SmartListController.FilterEntry();
 fe3.fieldName = 'Count(Id)';
 fe3.operator='>=';
 fe3.values = new String[]{'1'};
 fe3.type='INTEGER';
 List<smartLists.SmartListController.FilterEntry> fes = new List<smartLists.SmartListController.FilterEntry>{fe1, fe2, fe3};
 Test.startTest();
 // Define getPage parameters
 smartLists.SmartListApexSourceGetPage getPageParms =
 new
smartLists.SmartListApexSourceGetPage().withScope('everything').withFilter('').withFilterEntries(fes).withParentIdField('AccountId').withParentId(acc.Id).withSortField('StageName').withSortDirecti
on('asc').withOffset(0).withPageSize(10);
 ApexDataSourceWithParent ds = new ApexDataSourceWithParent();
 // Invoke getPage
 List<Object> result = ds.getPage(getPageParms);
 Test.stopTest();
 System.assertEquals(1, result.size());
 }

 @isTest
 static void testGetRecord(){
 // Create the test data
 Account acc1 = new Account(name = 'test1');

 Account acc2 = new Account(name = 'test2');
 List<Account> accs = new List<Account>{acc1, acc2};
 insert accs;
 Opportunity oppty1 = new Opportunity(name = 'Oppty1', AccountId = acc1.Id, CloseDate = System.today(), StageName = 'Prospecting');
 Opportunity oppty2 = new Opportunity(name = 'Oppty2', AccountId = acc2.Id, CloseDate = System.today(), StageName = 'Value Proposition');
 List<Opportunity> oppties = new List<Opportunity>{oppty1, oppty2};
 insert oppties;
 Test.startTest();
 ApexDataSourceWithParent ds = new ApexDataSourceWithParent();
 // Invoke getRecord
 List<Object> result = ds.getRecord(acc1.Id);
 Test.stopTest();
 System.assertEquals(1, result.size());
 }
}

Apex Data Source for Home Page or Custom Tab

Step 1: Create an Apex class with the following code. Make sure your user has access to the class:
global with sharing class ApexDataSource implements smartLists.SmartListApexSourceInterface2 {
 // Base query used by getPage and getRecords
 Static String baseQuery = 'SELECT AccountId, Account.Name AccountName, StageName, Sum(Amount) OpptiesSum, Count(Id) OpptiesCount, Owner.Name Owner FROM Opportunity';
 // Group by used by getPage and getRecords
 Static String groupByClause = ' GROUP BY StageName, AccountId, Account.Name, Owner.Name';

 // Get a list page
 public List<Map<String, Object>> getPage(smartLists.SmartListApexSourceGetPage parms) {
 String query = baseQuery;
 // Add visibility filter to the query
 query += ' USING SCOPE ' + parms.getScope();
 // If predefined filter defined for the list, add the filter to the where clause
 String whereClause = String.isEmpty(parms.getFilter()) ? '' : parms.getFilter();
 String havingClause = '';
 // If values entered in Filters Panel, add them to the where and having clauses
 if (parms.getFilterEntries() != null && parms.getFilterEntries().size() > 0) {
 List<smartLists.SmartListController.FilterEntry> whereEntries = new List<smartLists.SmartListController.FilterEntry>();
 List<smartLists.SmartListController.FilterEntry> havingEntries = new List<smartLists.SmartListController.FilterEntry>();
 for (smartLists.SmartListController.FilterEntry fe : parms.getFilterEntries()) {
 if (fe.fieldName == 'Sum(Amount)')
 havingEntries.add(fe);
 else if (fe.fieldName == 'Count(Id)')
 havingEntries.add(fe);
 else
 whereEntries.add(fe);
 }
 String filtersWidget = smartLists.SmartListController.buildFilter(whereEntries);
 whereClause += String.isEmpty(filtersWidget) ? '' : (String.isEmpty(whereClause) ? filtersWidget : ' AND (' + filtersWidget + ')');
 havingClause = smartLists.SmartListController.buildFilter(havingEntries);
 }
 // Add where clause to query
 query += String.isEmpty(whereClause) ? '' : ' WHERE ' + whereClause;
 // Add group by clause to query
 query += groupByClause;
 // Add having clause to query
 query += String.isEmpty(havingClause) ? '' : ' HAVING ' + havingClause;
 // If sort field passed, add sort parameters to query
 query += String.isEmpty(parms.getSortField()) ? '' : ' ORDER BY ' + parms.getSortField() + ' ' + parms.getSortDirection();
 // Add paging parameters to query
 query += ' LIMIT ' + parms.getPageSize() + ' OFFSET ' + parms.getOffset();
 // Retrieve the records
 return getRecords(query);
 }

 // Get a list record

 public List<Map<String, Object>> getRecord(String id) {
 // Add where clause to query
 String query = baseQuery + ' WHERE AccountId = \'' + id + '\'';
 // Add group by to query
 query += groupByClause;
 // Retrieve the records
 return getRecords(query);
 }

 // Query the database and format the records for Smart Lists
 private List<Map<String, Object>> getRecords(String query) {
 List<Map<String, Object>> results = new List<Map<String, Object>>();
 System.debug('Query ' + query);
 // Query the database
 AggregateResult[] oppties = Database.query(query);
 // Parse the returned records and format them for Smart List
 for (AggregateResult oppty : oppties) {
 Map<String, Object> record = new Map<String, Object>();
 record.put('RowKey', (String)oppty.get('AccountId') + (String)oppty.get('StageName') + (String)oppty.get('Owner')); // Note: Required field for identifying a unique record
 record.put('Id', oppty.get('AccountId')); // Note: A field called Id is required in the list for using flow actions
 record.put('Account.Name', oppty.get('AccountName'));
 record.put('StageName', oppty.get('StageName'));
 record.put('Sum(Amount)', oppty.get('OpptiesSum'));
 record.put('Count(Id)', oppty.get('OpptiesCount'));
 record.put('Owner.Name', oppty.get('Owner'));
 results.add(record);
 }
 return results;
 }
}

Step 2: Create a list definition

Notes:

- Data Provider Class is the name of the class created at Step 1
- RowKey is the name of the field populated in the Apex Data Source. It must contain a unique row identifier

Step 3: Create the fields

Field List Settings Filters Settings
Field Label Field Name Display

Type
Hyperlink
to Detail
Id Field

Display
in List

Display
Position
in List

Sortable
in List

Default
Sort
Field

Display
in
Filters
Panel

Display
Position
in Filters
Panel

Account Account.Name Hyperlink
to Detail

Id TRUE 0 Yes TRUE Yes 0

Stage StageName String TRUE 1 Yes FALSE Yes 1
Number of Opportunities Count(Id) Integer TRUE 2 Yes FALSE Yes 2
Total Amount Sum(Amount) Currency TRUE 3 Yes FALSE Yes 3
Owner Owner String TRUE 4 Yes FALSE Yes 4

Note:

- Field Label and Display Type are required for an Apex Data Source
- Hyperlink to Detail Id Field is required for Apex Data Sources if Display Type = ‘Hyperkink to Detail’. It must be populated with the name of

the data source field containing the Id of the target record

Step 4: Create the predefined filters
Label Filter Label Default

Filter
SOQL Filter

Apex - Won Won Opportunities FALSE IsClosed = true AND isWon = true
Apex - Working Opportunities in Progress TRUE IsClosed = false
Apex - Lost Lost Opportunities FALSE IsClosed = true AND isWon = false

Step 5: Add the list to your Home Page or to a custom tab

Test Class
@isTest
public with sharing class ApexDataSourceTest {
 @isTest
 static void testGetPage() {
 // Create the test data
 Account acc = new Account(name = 'test');
 insert acc;
 Opportunity oppty1 = new Opportunity(name = 'Oppty1', AccountId = acc.Id, CloseDate = System.today(), StageName = 'Prospecting', Amount = 100);
 Opportunity oppty2 = new Opportunity(name = 'Oppty2', AccountId = acc.Id, CloseDate = System.today(), StageName = 'Value Proposition', Amount = 100);
 Opportunity oppty3 = new Opportunity(name = 'Oppty3', AccountId = acc.Id, CloseDate = System.today(), StageName = 'Closed Won', Amount = 100);
 List<Opportunity> oppties = new List<Opportunity>{oppty1, oppty2, oppty3};
 insert oppties;
 // Create values from Filters Panel
 smartLists.SmartListController.FilterEntry fe1 = new smartLists.SmartListController.FilterEntry();
 fe1.fieldName = 'StageName';
 fe1.operator='LIKE';
 fe1.values = new String[]{'Prospecting' };
 fe1.type='STRING';
 smartLists.SmartListController.FilterEntry fe2 = new smartLists.SmartListController.FilterEntry();
 fe2.fieldName = 'Sum(Amount)';
 fe2.operator='>=';
 fe2.values = new String[]{'100'};
 fe2.type='CURRENCY';
 smartLists.SmartListController.FilterEntry fe3 = new smartLists.SmartListController.FilterEntry();
 fe3.fieldName = 'Count(Id)';
 fe3.operator='>=';
 fe3.values = new String[]{'1'};
 fe3.type='INTEGER';
 List<smartLists.SmartListController.FilterEntry> fes = new List<smartLists.SmartListController.FilterEntry>{fe1, fe2, fe3};
 Test.startTest();
 // Define getPage parameters
 smartLists.SmartListApexSourceGetPage getPageParms =
 new smartLists.SmartListApexSourceGetPage().withScope('everything').withFilter('').withFilterEntries(fes).withSortField('StageName').withSortDirection('asc').withOffset(0).withPageSize(10);
 ApexDataSource ds = new ApexDataSource();
 // Invoke getPage
 List<Object> result = ds.getPage(getPageParms);
 Test.stopTest();
 System.assertEquals(1, result.size());
 }

 @isTest
 static void testGetRecord(){
 // Create the test data
 Account acc1 = new Account(name = 'test1');
 Account acc2 = new Account(name = 'test2');

 List<Account> accs = new List<Account>{acc1, acc2};
 insert accs;
 Opportunity oppty1 = new Opportunity(name = 'Oppty1', AccountId = acc1.Id, CloseDate = System.today(), StageName = 'Prospecting');
 Opportunity oppty2 = new Opportunity(name = 'Oppty2', AccountId = acc2.Id, CloseDate = System.today(), StageName = 'Value Proposition');
 List<Opportunity> oppties = new List<Opportunity>{oppty1, oppty2};
 insert oppties;
 Test.startTest();
 ApexDataSource ds = new ApexDataSource();
 // Invoke getRecord
 List<Object> result = ds.getRecord(acc1.Id);
 Test.stopTest();
 System.assertEquals(1, result.size());
 }
}

Pre-requisites for adding standard record actions to your list

List Definition
SObject: must be populated with the base object
Row Key: can be the Id field for non-aggregate lists (see Field Definitions below)

Field Definitions
You must create a field definition for the record id: Field Name = Id
For objects with record types, you must create a field definition for the record type id: Field Name = RecordTypeId

Apex Data Source
The data source must return the record id in the Id field
For objects with record types, the data source must return the record type id in the RecordTypeId field

Interface and Classes Reference

smartLists.SmartListApexSourceInterface2 Interface

Interface that must be implemented by the data source
The data source class must be defined as global to be visible by the package

Method Parameter
Name Purpose Invoked when Description Type
getPage Returns one page of records list is displayed for the first time, is refreshed or

scroll is used for displaying more records
Parameters of the page smartLists.SmartListApexSourceGetPage

getRecord Returns one record Record must be refreshed after execution of a row
action
You don’t need to add code to this function if your
list does not use row actions

Record Id String

smartLists.SmartListApexSourceGetPage Class

Parameters of a call to smartLists.SmartListApexSourceInterface2.getPage.
This class includes a fluent builder for creating new instances of parameters for the test classes. Example: new
smartLists.SmartListApexSourceGetPage().withScope('everything').withFilter('Status = \'Closed'\').withXYZ…
Property Description Type Read Create
scope Visibility filter of the query:

- everything: All records
- my: My records
- team: My team records
- subordinates: My subordinates records

Notes:
- everything, my, team are SOQL scopes; must be added to USING SCOPE. See:

https://developer.salesforce.com/docs/atlas.en-
us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_using_scope.htm

- subordinates is not a SOQL scope; must be added to the WHERE clause as
Owner.UserRole.ParentRoleId = \'' + UserInfo.getUserRoleId() + '\''

String getScope() withScope(scope)

filter Predefined filter selected in the list; must be added to the WHERE claus
Null if no filters were added to the list

String getFilter() withFilter(filter)

parentIdField Name of the field of the list object containing the Id of the parent record; if populated must be
added to the WHERE clause with parentId
Only populated for child lists; null otherwise

String getParentIdField() withParentIdField(parentIdField)

parentId Id of the parent record; if populated must be added to the WHERE clause with parentIdField
Only populated for child lists; null otherwise

String getParentId() withParentId(parentId)

filterEntries List of filters entered in the Filters Panel and the SOSL search box; must be added to the
WHERE clause
smartLists.SmartListController.buildFilter(filterEntries) is used for converting the filter entries
into a string
Null if no filters added

List<smartLists.SmartListController.FilterEntry> getFilterEntries() withFilterEntries(filters)

https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_using_scope.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_using_scope.htm

sortField Sort field selected in the list; must be added to the SORT clause if populated
Null if no sort field selected

String getSortField() withSortField(sortField)

sortDirection Sort direction selected in the list: asc or desc; must be added to the SORT clause if populated String getSortDirection() withSortDirection(sortDirection)
offset Row number of the first record returned by the query; must be added to the query for paging Integer getOffset() withOffset(offset)
pageSize Number of records of the page; must be added to the query for paging Integer getPageSize() withPageSize(pageSize)

smartLists.SmartListController.FilterEntry Class

Filter entered in the Filters Panel or the SOSL Search box

Property Description
fieldName Name of the field in the data source or ‘SOSLSearch’ for the value entered in the SOSL Search box
operator Determined by the component from the Display Type:

- BOOLEAN: =
- STRING, EMAIL, PHONE, TEXTAREA, URL: LIKE
- DATE, DATETIME, TIME, CURRENCY, DECIMAL, PERCENT, INTEGER: >= OR <=

values Array of 1 value
Type Field Display Type

Localization

Overview

The data displayed in the lists is automatically localized. Picklist and Record Types values are translated in the user language if a translation is
provided in the Translation Workbench

Date and number fields are displayed according to the user locale.

The labels of the list, fields, filters, and actions are translatable. This can be done by entering $Label.MyCustomLabel in the corresponding Label
field.
See Step 1: Create a Smart List Definition for example.

All the strings and messages used by the component are translatable custom labels

Component Description Label Value
Global Assistive text for spinners Loading Loading...
Global Assistive text of dialogs close button Close Close
Global Cancel button label of dialogs and Filters Panel Cancel Cancel
SOSL Search box Placeholder SearchBoxPlaceholder Search this list...
SOSL Search box Assistive text SearchBoxLabel Search when user hits the 'enter' key
Custom Filters combobox Assistive text of the combobox FilterSelection Filter Selection
Visibility Filters combobox Assistive text of the combobox VisibilityFilterSelection Visibility Filter Selection
Visibility Filters combobox All filter label SOQLScopeAll All
Visibility Filters combobox My filter label SOQLScopeMy My
Visibility Filters combobox My Team filter label SOQLScopeMyTeam My Team
Visibility Filters combobox My Queues filter label SOQLScopeMyQueues My Queues
Visibility Filters combobox My Subordinates filter label SOQLScopeMySubordinates My Subordinates
Tile – Sort Field Selector Assistive text of the Sort Field Selector SortFieldSelection Sort Field Selection
Tile – Sort Field Order Assistive text of the Sort Ascending button SortAscending Sort Ascending
Tile – Sort Field Order Assistive text of the Sort Descending button SortDescending Sort Descending
Refresh list button Button title Refresh Refresh
Show/Hide Filters button Button title of selected state HideQuickFilters Hide Filters
Show/Hide Filters button Button title of deselected state ShowQuickFilters Show Filters
List Info Label for several items ItemPlural Items
List Info Label for one item ItemSingular item
List Info
Filters Panel

Label for several items selected in the list
Label for several items selected in the picklist values dialog

SelectedPlural selected

List Info Label for one item selected in the list SelectedSingular selected

Filters Panel Label for one item selected in the picklist values dialog
List Info Label for sort field SortedBy Sorted by
List Info Label of filter by criteria FilteredBy Filtered by
List Message Message displayed at the bottom of the list when more

records are available
LoadMoreRecords Scroll to load more records

List Message Message displayed at the bottom of the list when the
maximum number of records has been loaded

MaxRecordsLoaded Maximum of {0} records loaded.
Additional records may be available

List Message Message displayed at the bottom of the list when no records
found

NoItemsToDisplay No items to display.

List Message Message displayed at the bottom of the list when all records
have been loaded

AllRecordsLoaded All records are loaded

Filters Panel Filter widget title QuickFilters Filters
Filters Panel SOSL search field label - Files FilterSOSLSearchFileContent Search File Content
Filters Panel SOSL search field label - Record FilterSOSLSearchRecord Search Record
Filters Panel Date/Datetime/Time range: Start filter label FilterRangeStartLabel Start
Filters Panel Date/Datetime/Time range: End filter label FilterRangeEndLabel End
Filters Panel Number Range: Min filter label FilterRangeMinLabel Min
Filters Panel Number Range: Max filter label FilterRangeMaxLabel Max
Filters Panel Boolean filter: checked value label Checked Checked
Filters Panel Boolean filter: unchecked value label Unchecked Unchecked
Filters Panel Picklist filter: label of the Show More button displayed when

the picklist has more than 5 values
ShowMore Show More

Filters Panel Lookup filter: search box placeholder when no data has been
entered

LookupPlaceholder Search {0}...

Filters Panel Lookup filter – Search results: recent records label LookupRecent Recent {0}
Filters Panel Lookup filter – Object selector: accessible text LookupObjectSelector Select an object - Current Selection: {0}
Filters Panel Lookup filter – Object selector: queue object label LookupQueueus Queues
Filters Panel Lookup filter – Search results: no records found message LookupNoResults No Results

Filters Panel /Field label in List Label of the Owner field Owner Owner
Filters Panel Clear filter button assistive text Clear Clear
Filters Panel Apply button label Apply Apply
Filters Panel Clear All Filters button label ClearAllFilters Clear All Filters
Filters Panel / SOSL Search box SOSL search field: Error message for value with less than 2

characters
FilterSOSLSearchTooShortError The search string must be at least 2

characters
Filters Panel Date/Datetime/Time range: Error message for start value >

end value
FilterRangeStartError Start value must be lower than End value

Filters Panel Date/datetime range: Error message for end value < start
value

FilterRangeEndError End value must be greater than Start
value

Filters Panel Number range: Error message for min value > max value FilterRangeMinError Min value must be lower than Max value
Filters Panel Number range: Error message for max value < min value FilterRangeMaxError Max value must be greater than Min

value

Filters Panel – Select Picklist values
dialog

Label of Available picklist values Available Available

Filters Panel – Select Picklist values
dialog

Label of Selected picklist values Selections Selections

New record list action New button label New New
Edit Record dialog - New Next button label on the record type page Next Next
Edit Record dialog – New Message displayed on save success was created. was created.
Edit Record dialog
Edit File Details dialog
Edit record row action

Dialog title
Dialog title
Edit menu item label

Edit Edit

Edit Record dialog - Edit
Edit File Details dialog

Save button label Save Save

Edit Record dialog Label of required field description RequiredInformation Required Information
Edit Record dialog Message displayed if page level errors after save ReviewPageErrors Review the errors on this page

Edit Record dialog Message displayed if field level errors after save ReviewFieldsErrors Review the following fields

Edit Record dialog Assistive text for save in progress Saving Saving...

Edit Record dialog
Edit File Details dialog

Message displayed on save success WasSaved was saved.

Delete record row action
Delete file row action

Menu item label Delete Delete

Delete Record dialog Dialog title DeleteRecordTitle Delete {0}?
Delete Record dialog Confirmation message for record deletion DeleteRecordMessage Are you sure you want to delete this {0}?
Delete Record dialog Confirmation message for file deletion DeleteFileMessage Deleting a file also removes it from any

records or posts it's attached to
Delete Record dialog Message displayed on successful record delete WasDeleted was deleted.
Upload Files list action Button label UploadFiles Upload Files
Upload Files list action Message displayed on successful file upload FilesHasBeenUploaded File(s) have been uploaded
Download list action Menu assistive text DownloadMenu Download Menu
Download Files dialog Confirmation message DownloadConfirm Are you sure you want to download {0}

file(s) worth {1} MB?
Download Files dialog Dialog title DownloadFiles Download Files
Download Files dialog Error message when download files limit exceeded DownloadLimit Download limit exceeded. Please

download less than {0}MB and less than
{1} files

Download All Files list action Menu item label DownloadAllFiles Download All Files
Download Selected Files list action Menu item label DownloadSelectedFiles Download Selected Files
Preview Selected Files list action Button assistive text PreviewSelectedFiles Preview Selected Files
Download File row action Menu item label Download Download
Edit Files Details row action Menu item label EditFileDetails Edit File Details
Preview file row action Menu item label PreviewFile Preview File
Upload New Version row action Menu item label UploadNewVersion Upload New Version
Upload New Version row action Message displayed after a successful upload of a new version FileVersionWasUploaded File "{0}" was uploaded

Upload New Version dialog Label of Upload button Upload Upload
Upload New Version dialog Label of new version reason field UploadNewVersionReason What Changed? (optional)
Upload New Version dialog Error message for technical error on upload new version ErrorMsgCantUploadNewVersion Unexpected error on upload new

version:
Upload New Version dialog Error message for invalid file extension ErrorMsgInvalidExtension Your company doesn't support the

following file types:
View Files Details row action Menu item label ViewFileDetails View File Details
Smart Files List dialogs Used in dialogs and messages File File
Smart Files List Default label of files list Files Files
Tiles Load More button label LoadMore Load More
Tiles Load All button label LoadAll Load All
Row selection – Screenflow
context

Error message on selected records < min selected records MinRowSelectionError You must select at least {0} record(s)

Inline Edit Inline Edit Errors Errors Errors(s)

Inline Edit Inline Edit changes were saved message SavedChanges Your changes has been saved

Inline Edit None value for picklist NoneValue --None--

