
46% 31% 23%
HITTING GOVERNOR 
LIMITS

BUGS CAUSED BY 
CUSTOMIZATION

UNUSED FEATURES 
THEY PAID FOR 

What Worries 
Salesforce Users Most 
When Using Their Orgs



Salesforce is a robust platform for digitizing business operations and automating processes in 
an organization. However, issues sometimes arise when running the platform. I asked current 
Salesforce users about what worries them most when using the platform. In this blog post, I 
would like to present the most common answers to this question and discuss some approaches 
to dealing with known issues in Salesforce.

Avoid complex calculations—Complex logic can be CPU-intensive. Try to simplify your code and use clear functions. If you require 
resource-intensive calculations, consider using Salesforce Functions, or build a Heroku app for this.

Review how loops are used—Loops, and especially nested loops, consume a significant amount of CPU time. Consider using 
collections or bulk operations to eliminate the need to cycle through records.

Avoid recursion—Recursion can cause you to quickly reach the CPU time limit. Be sure to avoid endless recursion.

Asynchronous processing—The queueable/future and batch Apex methods allow you to execute long-running or resource-
intensive processes in the background without impacting the current transaction.

Bulkify code—Wherever possible, write code that can handle large amounts of data efficiently. Use bulk patterns to process data 
and avoid writing code that processes one record at a time.

WHAT BOTHERS SALESFORCE USERS 
THE MOST WHEN USING THEIR ORGS

Results of the poll by Slava Pautaran

46% 31% 23%
HITTING GOVERNOR 
LIMITS

BUGS CAUSED BY 
CUSTOMIZATION

UNUSED FEATURES 
THEY PAID FOR 



Hitting Limits
46% of my respondents sometimes encounter issues with hitting limits. Let’s see what limits can be hit and 
how to avoid this.

To prevent the monopolization of Salesforce’s shared resources in a multi-tenant environment, the concept of 
governor limits is applied. Apex code won’t work when you exceed these limits, which means you should try to 
review it. There are two big problems here.

Avoid complex calculations—Complex logic can be CPU-intensive. Try to simplify your code and use clear functions. If you require 

resource-intensive calculations, consider using Salesforce Functions, or build a Heroku app for this.

Review how loops are used—Loops, and especially nested loops, consume a significant amount of CPU time. Consider using 
collections or bulk operations to eliminate the need to cycle through records.

Avoid recursion—Recursion can cause you to quickly reach the CPU time limit. Be sure to avoid endless recursion.

Asynchronous processing—The queueable/future and batch Apex methods allow you to execute long-running or resource-

intensive processes in the background without impacting the current transaction.

Bulkify code—Wherever possible, write code that can handle large amounts of data efficiently. Use bulk patterns to process data 
and avoid writing code that processes one record at a time.

CPU Time Limit Exceeded arises when automations (Apex, Flow, etc.) take too long. There are some best 
practices for such situations:

Apex governor limits



Feel free to check out more Salesforce best practices for writing code to 
help you stay within the predefined execution limits.

Heap Size Limit occurs when too much data is stored in memory while 
executing Apex code. Here, I’d recommend the following:

Use efficient data structures—Choose the right data structures for your needs. 

Minimize the number of variables created—Don’t create unnecessary variables 

or objects. Declare variables within the smallest possible scope and dispose 

of them when they are no longer needed. 

Limit the size of collections—Avoid large collections like Lists or Maps within 

loops, as these can quickly inflate heap size.

Dispose of unused resources—Release resources when you are finished with 
them. For example, clear collections.

Consider asynchronous processing—For long-running processes, consider 

using asynchronous processing methods like queueable Apex.

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_limits_tips.htm


API request limits

Salesforce also restricts the number of incoming API requests per organization/24 hours; the total 
number available is calculated by multiplying the number of active licenses by the quota per license 
and adding the number of base licenses available.

So, if you can’t gain access to data in your org using a third-party app integration, it would be best 
to use a different API that saves your request or use bulk APIs.

For example, you might be using multiple subsequent requests to create an account, contact, or 
opportunity from a third-party application such as a public website. Here, you are using three API 
calls, which is a lot. Instead, you could use Composite or sObject Tree REST resources to optimize 
your API calls. In this case, the entire request counts only as a single call toward your API limit.

Also, your application might be creating hundreds or thousands of data entries hourly or daily, 
which means that it is implemented as real-time or near-real-time integration. In this case, you 
can question whether it’s required to have all of these integrations in real time or near-real time. 
You can save a lot of API calls if you make data replication—which runs every 15 min, hourly, or even 
daily—a scheduled job instead. This way, you can use Bulk API to keep your API call quota from 
hitting the limit.

Salesforce recommends certain best practices for using certain APIs. Follow the link to find your use 
case. 

http://ite_composite.htm/
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_composite_sobject_tree.htm
https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/asynch_api_intro.htm
https://developer.salesforce.com/docs/marketing/marketing-cloud/guide/api_best_practices_use_cases.html
Я
Подчеркнутый



Storage limits

Salesforce encourages users to scale up as an 
organization grows and the volume of business 
operations expands. As the volume of data to be 
stored increases, so does the time it takes to perform 
certain operations. Which increases the time required 
to perform certain operations. Salesforce storage is 
divided into two categories—file storage and data 
storage. Both of them need to be optimized. 

To optimize work with files, organize them properly in 
folders, practice file collaboration and version control 
(instead of duplicating files), and review old files and 
files owned by deactivated users. There are also 
some best practices for working with large data 
volumes (LDVs). These include archiving unnecessary 
data, using mashups and selective queries, and 
adopting more efficient ways to load LDVs into 
Salesforce. You can also check out the best practices 
for deployments with LDVs.

https://developer.salesforce.com/docs/atlas.en-us.salesforce_large_data_volumes_bp.meta/salesforce_large_data_volumes_bp/ldv_deployments_introduction.htm
https://developer.salesforce.com/docs/atlas.en-us.salesforce_large_data_volumes_bp.meta/salesforce_large_data_volumes_bp/ldv_deployments_introduction.htm


Bugs caused by customization

Any custom-developed software usually has bugs, as it is not possible to foresee everything and plan 

for every edge case and dependency. However, there are some practices that you can follow to 

minimize the number of bugs and their impact:

Use Git for source control, branching, and to 

create a release strategy

Use source-driven development with SFDX

Implement coding guidelines and development 

best practices, including unit testing best 

practices for both Apex and LWC code

Implement an efficient environment strategy for 
Salesforce development and operations 

Create scratch orgs for development and 

sandboxes for dev integration, QA, UAT, and 

hotfixes

Implement peer code review and static code 
analysis

Implement automated regression testing

Train QAs to understand the specifics of 
Salesforce (Passing admin certs is usually a 
huge help.)

Make frequent, more granular releases (CI/CD)

Conduct smoke and sanity testing for every 
release



Many of the features above are available OOTB. Feel free to look for them and try to apply them yourself.

Underused subscription features
Sometimes, Salesforce users purchase licenses for products that end up never being used. They either don’t 
need the products or don’t know how to start using them or take advantage of certain features.

First, check the summary data on the company information page in the setup menu to start dealing with 
unused licenses and underused product features. Then, you’ll probably need a competent Salesforce 
administrator to help you optimize your tool set.

For example, compare your implementation with the following useful features:

Account, Opportunity, Case Teams

Lead, Opportunity Scoring

Prediction Builder & Next Best Action

Einstein Bots

Knowledge Articles Recommendations

Email Integration

Omni-Channel Routing

Chatter

Field History Tracking

Forecasting

Dynamic Forms

Permission Set Groups

Restriction Rules

In-App Guidance

Pipeline Inspection

Scoping Rules

DevOps Center

DevHub & Scratch Orgs

Flow Orchestrator



Request a FREE Salesforce health check 
from a Salesforce Certified Technical 
Architect

Brimit is a team of Salesforce experts

https://www.brimit.com/technologies/salesforce-health-check

https://www.brimit.com/technologies/salesforce

https://www.brimit.com/technologies/salesforce-health-check
https://www.brimit.com/technologies/salesforce

	What Worries Salesforce Users Most1
	What Worries Salesforce Users Most2
	What Worries Salesforce Users Most

