
Review Summary 

Strengths: 

● Technically accurate and well-organized. 
 

● Demonstrates thought leadership in managing Salesforce platform event issues. 
 

● Outlines a solution in actionable steps with measurable benefits. 
 

Recommendations: 

1. Remove any implied client specificity – while there’s no explicit client name, the 

tone suggests this might have been written for internal or client-specific 

documentation. 
 

2. Tone polishing – the current draft reads like a tech spec; softening language 

slightly and improving transitions makes it more engaging for a general audience. 
 

3. Improve structure clarity – breaking up dense sections and using active voice 

improves flow. 
 

4. Clarify reusable patterns – frame the solution as best practice, not just a reactive 

fix. 
 

 

Refined & Public-Ready Version 

Case Study: Preventing Platform Event Overload and Recursion in Salesforce 

Overview 



Salesforce Platform Events offer powerful, asynchronous communication between 

internal and external systems. However, they are bound by strict system limits that, 

when breached, can disrupt core business operations: 

● Hourly Publishing Limit: Up to 250,000 events/hour. 
 

● Daily Delivery Limit: Varies by Salesforce edition. 
 

This case study outlines a generalized strategy for addressing issues related to recursive 

triggers and excessive event generation—common causes of platform event limit 

breaches. 

 

The Challenge 

In complex Salesforce implementations, event-driven architectures can inadvertently 

create loops that lead to platform instability. Two recurring issues often surface: 

1. Cyclic Platform Event Triggering 
 Platform events trigger other events in a loop, unintentionally multiplying event 

volume. This can cause: 

● Limit breaches (hourly or daily). 
 

● Slower system performance. 
 

● Failure of downstream processes dependent on event delivery. 
 

2. Record-Triggered Flow Recursion 
 A record-triggered flow publishes a platform event that performs a DML operation on 

the same record. This re-triggers the flow—resulting in: 

● Infinite execution loops. 
 



● Rapid consumption of event publishing limits. 
 

 

Solution Strategy 

To mitigate these problems, a structured approach was implemented: 

1. Smart Event Handling Logic 

● Applied conditions to ensure events are only published when meaningful changes 

occur. 
 

● Introduced flags or custom fields to track record state (e.g., “Processed” or 

“Handled” booleans). 
 

2. Preventing Recursive Flow Calls 

● Embedded decision elements in flows to check record status before performing 

DML. 
 

● Used conditional logic to avoid updates on already-processed records. 
 

3. Flow Design Optimization 

● Refactored flows to remove redundant triggers. 
 

● Shifted non-critical updates to scheduled or batch flows to reduce real-time 

dependency. 
 

4. Custom Rate-Limiting Controls 

● Implemented debounce logic to delay or limit rapid, repeated triggers. 
 



● Designed logic to throttle platform event publication during high-volume periods. 
 

 

Outcome 

This strategic refactoring led to: 

● Elimination of Recursion Loops through decision checks and event guards. 
 

● Reduced Event Volume by eliminating unnecessary triggers. 
 

● Stabilized Performance during peak usage hours. 
 

● Protected Downstream Processes that rely on timely event delivery. 
 

 

Key Benefits 

● Efficient Use of Platform Events: Preventing loops ensured sustainable scalability. 
 

● Enhanced System Performance: System load was minimized by eliminating 

redundant event processing. 
 

● Greater Flexibility: Custom logic allowed for quick adjustments without 

deployments. 
 

● Future-Proofing: Monitoring and alerting mechanisms provided early warnings 

for event threshold breaches. 
 

● Operational Continuity: Business-critical processes remained uninterrupted, even 

during spikes in activity. 
 

 


	Review Summary 
	Strengths: 
	Recommendations: 

	Refined & Public-Ready Version 
	Case Study: Preventing Platform Event Overload and Recursion in Salesforce 
	Overview 
	The Challenge 
	Solution Strategy 
	Outcome 
	Key Benefits 



