
How We Built a Seamless Salesforce
Deployment Pipeline with Gearset, Git &
Jira

Part 1: The Human Side of DevOps – Our Story
As our Salesforce team and org began to grow, so did the complexity of our deployments.
Initially, we were managing releases the old-fashioned way—manually creating change sets or
directly using Gearset's compare and deploy feature between orgs, coordinating over Teams,
tracking Jira ticket status separately, and double (sometimes triple) checking environments
before pushing anything live.

It worked… until it didn’t.

As we scaled, our release process started slowing us down. We lacked consistency, visibility,
and automation. That’s when we began our journey into CI/CD using Gearset, Git, and Jira.

Why We Made the Shift
Here’s what we were struggling with:

●​ Developers accidentally overwriting each other’s changes​

●​ No centralized source of truth — it was hard to track exactly what was deployed​

●​ Errors in UAT and production due to missed dependencies​

●​ A complete disconnect between Jira tickets and actual deployments​

●​ Painful (or impossible) rollbacks​

●​ And honestly… deploy days were stressful

​
​

So we asked ourselves: What would a dream deployment process look
like?

It looked like this:

●​ Every change tied to a Jira ticket​

●​ Developers working on isolated branches​

●​ Stakeholders knowing exactly what was going live, and when

So we rolled up our sleeves.

Part 2: Solution Architecture Overview
Our solution is built around three key tools:

●​ Gearset: To automate comparisons, create pull requests, validate changes, and manage
deployments​

●​ Git (GitHub): Our central version control and collaboration platform​

●​ Jira: To manage and track development work, tie deployments to business
requirements, and provide traceability​

How We Built It — Step by Step

Step 1: Introduced Git as Our Source of Truth

We standardized our branching strategy:

●​ feature/SF-####-description for all new work​

●​ Dev for sanity testing​

●​ UAT for regression testing​

●​ main for production-ready code

We made sure every commit referenced a Jira ticket. Pull requests were required, and we kept
our review cycles tight.

Step 2: Set Up Gearset for CI/CD

Gearset was a game-changer for us:

●​ We connected it to our Git repo and Salesforce orgs​

●​ Set up an automated job that deployed to Dev when a PR was merged into the Dev
branch, which then automatically created a PR to UAT.​

●​ Set up a second job for UAT, triggered by merges into UAT, which then automatically
created a PR to main.​

●​ Set up a third job for production, triggered by merges into main

Gearset's change monitoring and validation tools helped catch common issues early — like
missing field-level security or permission sets.

Step 3: Connected Jira with Git & Gearset

Using Jira automation, we linked ticket status with Git commits and Gearset deployment jobs.

We also used release dashboards in Jira so business users could see what was going live —
without needing to ask us.

Step 4: Added Rollback and Monitoring

Gearset stores every deployment and backup. If something slips through, we can roll back in
minutes — no more digging through old change sets or frantically rebuilding lost metadata.

Our CI/CD Pipeline

1. Development in Personal Sandboxes

Each developer works in their own Salesforce sandbox environment. These isolated
environments allow for independent development without interfering with each other’s work.

2. Pull Requests to the Dev Branch

Once development is complete and tested in the personal sandbox, a pull request (PR) is
created from the feature branch to the shared Dev branch. This initiates automatic validation via
Gearset. The Deployment team then merges the PR into Dev.​

3. Automatic PR Creation from Dev to UAT

Upon successful merge to the Dev branch, Gearset automatically creates a PR from Dev to
UAT. However, the actual deployment to UAT is intentionally kept manual.

4. Controlled UAT Deployment

Deployments to UAT are handled manually by the Deployment team, and only when:

●​ The Developer confirms the feature is ready for testing​

●​ The assigned Project Manager reviews and approves the work in Dev

This ensures only validated and business-approved features move forward.

5. UAT Testing and Regression

Once deployed, QA and business stakeholders perform functional and regression testing. Any
issues are tracked in Jira and fixes follow the same Dev → UAT cycle.

6. Controlled Releases to Production

After UAT sign-off:

●​ Each developer creates their own release branch for the Jira tickets they’re responsible
for.​

●​ Two code reviewers are required to approve production PRs. The Deployment team
merges those release branches into main, triggering Gearset's deployment job for
Production

Results (That We’re Proud Of)
●​ Deployment time reduced by 80%​

●​ Zero post-deployment surprises​

●​ Improved collaboration between dev, QA, and product teams​

●​ Rollback safety net that gives us confidence to push changes faster​

●​ No more accidental code overwrites thanks to Git-based version control

But the biggest win? Our release process no longer feels like a battle. It feels like flow.

Final Thoughts
Implementing CI/CD wasn’t an overnight switch. There were bumps. There were “just one more
test run” late nights. But the outcome was worth it.

If you're considering bringing automation and version control into your Salesforce workflow:

●​ Start small​

●​ Get team buy-in​

●​ Show results early

For us, Gearset + Git + Jira didn’t just transform our deployment process — it made us a
stronger, more collaborative team.

	How We Built a Seamless Salesforce Deployment Pipeline with Gearset, Git & Jira
	Part 1: The Human Side of DevOps – Our Story
	Why We Made the Shift
	So we asked ourselves: What would a dream deployment process look like?

	Part 2: Solution Architecture Overview
	How We Built It — Step by Step
	Step 1: Introduced Git as Our Source of Truth
	Step 2: Set Up Gearset for CI/CD
	Step 3: Connected Jira with Git & Gearset
	Step 4: Added Rollback and Monitoring

	Our CI/CD Pipeline
	1. Development in Personal Sandboxes
	2. Pull Requests to the Dev Branch
	3. Automatic PR Creation from Dev to UAT
	4. Controlled UAT Deployment
	5. UAT Testing and Regression
	6. Controlled Releases to Production

	Results (That We’re Proud Of)
	Final Thoughts

