
Zipping Multiple Files in Salesforce Using
Compression.ZipWriter

Overview
Salesforce developers often face scenarios where multiple files must be bundled and shared as
a single downloadable package—just like zipping folders on your computer. Thankfully,
Salesforce offers a native utility: Compression.ZipWriter, which allows you to
programmatically create .zip files within Apex.

In this blog post, we'll explore:

●​ Why and when to zip files in Salesforce​

●​ How Compression.ZipWriter works​

●​ A practical example using ContentVersion​

●​ Tips for large-scale and batch-safe implementations​

Why Use Zipping in Apex?
Here are a few common business cases:

●​ Combining multiple invoice PDFs into a zip for monthly customer reporting​

●​ Packaging student records or course materials for e-learning portals​

●​ Archiving project documents into one downloadable bundle​

Salesforce doesn't support folders inside the Files object, so zipping provides users with a clean
and organized way to download multiple documents at once.

Meet Compression.ZipWriter

Compression.ZipWriter is a built-in Apex class that allows you to:

●​ Create a .zip archive in memory​

●​ Add multiple file entries (with names and binary data)​

●​ Output a final Blob that can be used to attach to records or emails​

This enables Apex developers to replicate standard file compression behavior inside Salesforce
natively.

Example: Zipping Uploaded Files by Project

Let’s say users upload files (stored as ContentVersion records) to a custom Project__c
record. We want to gather all related files and zip them into one archive that can be emailed or
stored.

Apex Code Example

public class ProjectFileZipper {​
 public static Blob zipProjectFiles(Id projectId) {​
 List<ContentVersion> versions = [​
 SELECT Id, Title, PathOnClient, VersionData​
 FROM ContentVersion​
 WHERE FirstPublishLocationId = :projectId​
];​
 Compression.ZipWriter zipWriter = new Compression.ZipWriter();​
 for (ContentVersion cv : versions) {​
 String fileName = String.isNotBlank(cv.PathOnClient) ?

cv.PathOnClient : cv.Title;​
 zipWriter.addEntry(fileName, cv.VersionData);​
 }​
 return zipWriter.getArchive();​
 }​
}

Sending the Zip as an Email Attachment
You can use Salesforce’s email service to send the generated zip file.

Blob zipBlob = ProjectFileZipper.zipProjectFiles(projectId);​
​
Messaging.SingleEmailMessage email = new Messaging.SingleEmailMessage();​
email.setToAddresses(new String[] { 'user@example.com' });​
email.setSubject('Your Project Files');​
email.setPlainTextBody('Attached is the zip archive of your files.');​
​
Messaging.EmailFileAttachment attachment = new

Messaging.EmailFileAttachment();​
attachment.setFileName('ProjectDocs.zip');​
attachment.setBody(zipBlob);​
attachment.setContentType('application/zip');​
​
email.setFileAttachments(new Messaging.EmailFileAttachment[] { attachment

});​
​
Messaging.sendEmail(new Messaging.SingleEmailMessage[] { email });

Best Practices

●​ Batch-Friendly: Move zipping logic to the finish() method in a batch job to avoid
heap size limits.​

●​ File Size Limit: Keep attachments under 25 MB to prevent email delivery failures.​

●​ Error Handling: Always check for null VersionData to avoid malformed entries.​

●​ File Naming: Clean file names to avoid unsafe characters like slashes or colons.​

Where You Can Use This

●​ Internal portals and dashboards​

●​ Automated export tools for community or customer users​

●​ Scheduled archiving jobs for compliance reporting​

●​ Button-triggered document bundles in LWC or Aura components​

Conclusion

With Compression.ZipWriter, Salesforce provides a powerful yet simple tool for packaging
multiple files into a single archive. Whether you're delivering grouped reports, bundling related
content, or enhancing your automation workflows, zipping files with Apex can dramatically
improve both usability and performance.

	Overview
	Why Use Zipping in Apex?
	Meet Compression.ZipWriter
	Example: Zipping Uploaded Files by Project
	Apex Code Example

	Sending the Zip as an Email Attachment
	Best Practices
	
	Where You Can Use This
	Conclusion

