
Zipping Multiple Files in Salesforce Using 
Compression.ZipWriter 

Overview 
Salesforce developers often face scenarios where multiple files must be bundled and shared as 
a single downloadable package—just like zipping folders on your computer. Thankfully, 
Salesforce offers a native utility: Compression.ZipWriter, which allows you to 
programmatically create .zip files within Apex. 

In this blog post, we'll explore: 

●​ Why and when to zip files in Salesforce​
 

●​ How Compression.ZipWriter works​
 

●​ A practical example using ContentVersion​
 

●​ Tips for large-scale and batch-safe implementations​
 

 

Why Use Zipping in Apex? 
Here are a few common business cases: 

●​ Combining multiple invoice PDFs into a zip for monthly customer reporting​
 

●​ Packaging student records or course materials for e-learning portals​
 

●​ Archiving project documents into one downloadable bundle​
 

Salesforce doesn't support folders inside the Files object, so zipping provides users with a clean 
and organized way to download multiple documents at once. 

 
 



Meet Compression.ZipWriter 

Compression.ZipWriter is a built-in Apex class that allows you to: 

●​ Create a .zip archive in memory​
 

●​ Add multiple file entries (with names and binary data)​
 

●​ Output a final Blob that can be used to attach to records or emails​
 

This enables Apex developers to replicate standard file compression behavior inside Salesforce 
natively. 

 

Example: Zipping Uploaded Files by Project 

Let’s say users upload files (stored as ContentVersion records) to a custom Project__c 
record. We want to gather all related files and zip them into one archive that can be emailed or 
stored. 

Apex Code Example 

public class ProjectFileZipper {​
    public static Blob zipProjectFiles(Id projectId) {​
        List<ContentVersion> versions = [​
            SELECT Id, Title, PathOnClient, VersionData​
            FROM ContentVersion​
            WHERE FirstPublishLocationId = :projectId​
        ];​
        Compression.ZipWriter zipWriter = new Compression.ZipWriter();​
        for (ContentVersion cv : versions) {​
            String fileName = String.isNotBlank(cv.PathOnClient) ? 

cv.PathOnClient : cv.Title;​
            zipWriter.addEntry(fileName, cv.VersionData);​
        }​
        return zipWriter.getArchive();​
    }​
} 

 
 



Sending the Zip as an Email Attachment 
You can use Salesforce’s email service to send the generated zip file. 

Blob zipBlob = ProjectFileZipper.zipProjectFiles(projectId);​
​
Messaging.SingleEmailMessage email = new Messaging.SingleEmailMessage();​
email.setToAddresses(new String[] { 'user@example.com' });​
email.setSubject('Your Project Files');​
email.setPlainTextBody('Attached is the zip archive of your files.');​
​
Messaging.EmailFileAttachment attachment = new 

Messaging.EmailFileAttachment();​
attachment.setFileName('ProjectDocs.zip');​
attachment.setBody(zipBlob);​
attachment.setContentType('application/zip');​
​
email.setFileAttachments(new Messaging.EmailFileAttachment[] { attachment 

});​
​
Messaging.sendEmail(new Messaging.SingleEmailMessage[] { email }); 

 
 

Best Practices 

●​ Batch-Friendly: Move zipping logic to the finish() method in a batch job to avoid 
heap size limits.​
 

●​ File Size Limit: Keep attachments under 25 MB to prevent email delivery failures.​
 

●​ Error Handling: Always check for null VersionData to avoid malformed entries.​
 

●​ File Naming: Clean file names to avoid unsafe characters like slashes or colons.​
 

 

 

Where You Can Use This 



●​ Internal portals and dashboards​
 

●​ Automated export tools for community or customer users​
 

●​ Scheduled archiving jobs for compliance reporting​
 

●​ Button-triggered document bundles in LWC or Aura components​
 

 

Conclusion 

With Compression.ZipWriter, Salesforce provides a powerful yet simple tool for packaging 
multiple files into a single archive. Whether you're delivering grouped reports, bundling related 
content, or enhancing your automation workflows, zipping files with Apex can dramatically 
improve both usability and performance. 
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